@article{DMGT_2007_27_3_a5,
author = {Hage, Jurriaan and Harju, Tero},
title = {Towards a characterization of bipartite switching classes by means of forbidden subgraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {471--483},
year = {2007},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a5/}
}
TY - JOUR AU - Hage, Jurriaan AU - Harju, Tero TI - Towards a characterization of bipartite switching classes by means of forbidden subgraphs JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 471 EP - 483 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a5/ LA - en ID - DMGT_2007_27_3_a5 ER -
Hage, Jurriaan; Harju, Tero. Towards a characterization of bipartite switching classes by means of forbidden subgraphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 471-483. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a5/
[1] D.G. Corneil and R.A. Mathon, Geometry and Combinatorics: Selected Works of J.J. Seidel (Academic Press, Boston, 1991).
[2] A. Ehrenfeucht, T. Harju and G. Rozenberg, The Theory of 2-Structures (World Scientific, Singapore, 1999).
[3] J. Hage, Structural Aspects Of Switching Classes (PhD thesis, Leiden Institute of Advanced Computer Science, 2001) http://www.cs.uu.nl/people/jur/2s.html.
[4] J. Hage, Enumerating submultisets of multisets, Inf. Proc. Letters 85 (2003) 221-226, doi: 10.1016/S0020-0190(02)00394-0.
[5] J. Hage and T. Harju, A characterization of acyclic switching classes using forbidden subgraphs, SIAM J. Discrete Math. 18 (2004) 159-176, doi: 10.1137/S0895480100381890.
[6] J. Hage and T. Harju and E. Welzl, Euler Graphs, Triangle-Free Graphs and Bipartite Graphs in Switching Classes, Fundamenta Informaticae 58 (2003) 23-37.
[7] A. Hertz, On perfect switching classes, Discrete Applied Math. 89 (1998) 263-267, doi: 10.1016/S0166-218X(98)00134-6.
[8] E. Spence, Tables of Two-graphs, http://gauss.maths.gla.ac.uk/ted/.
[9] J.H. van Lint and J.J. Seidel, Equilateral points in elliptic geometry, Proc. Kon. Nederl. Acad. Wetensch. (A) 69 (1966) 335-348. Reprinted in [1].
[10] T. Zaslavsky, A Mathematical Bibliography of Signed and Gain Graphs and Allied Areas, Electronic J. Combin., 1999. Dynamic Survey No. DS8.