On (k,l)-kernels in D-join of digraphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 457-470.

Voir la notice de l'article provenant de la source Library of Science

In [5] the necessary and sufficient conditions for the existence of (k,l)-kernels in a D-join of digraphs were given if the digraph D is without circuits of length less than k. In this paper we generalize these results for an arbitrary digraph D. Moreover, we give the total number of (k,l)-kernels, k-independent sets and l-dominating sets in a D-join of digraphs.
Keywords: (k,l)-kernel, k-independent set, l-dominating set, D-join, counting
@article{DMGT_2007_27_3_a4,
     author = {Szumny, Waldemar and W{\l}och, Andrzej and W{\l}och, Iwona},
     title = {On (k,l)-kernels in {D-join} of digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {457--470},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a4/}
}
TY  - JOUR
AU  - Szumny, Waldemar
AU  - Włoch, Andrzej
AU  - Włoch, Iwona
TI  - On (k,l)-kernels in D-join of digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 457
EP  - 470
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a4/
LA  - en
ID  - DMGT_2007_27_3_a4
ER  - 
%0 Journal Article
%A Szumny, Waldemar
%A Włoch, Andrzej
%A Włoch, Iwona
%T On (k,l)-kernels in D-join of digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 457-470
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a4/
%G en
%F DMGT_2007_27_3_a4
Szumny, Waldemar; Włoch, Andrzej; Włoch, Iwona. On (k,l)-kernels in D-join of digraphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 457-470. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a4/

[1] M. Blidia, P. Duchet, H. Jacob and F. Maffray, Some operations preserving the existence of kernels, Discrete Math. 205 (1999) 211-216, doi: 10.1016/S0012-365X(99)00026-6.

[2] R. Diestel, Graph Theory (Springer-Verlag, Heidelberg, New-York, Inc., 2005).

[3] H. Galeana-Sanchez, On the existence of kernels and h-kernels in directed graphs, Discrete Math. 110 (1992) 251-225, doi: 10.1016/0012-365X(92)90713-P.

[4] M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combin. 60 (2001) 137-147.

[5] M. Kucharska, On (k,l)-kernel perfectness of special classes of digraphs, Discuss. Math. Graph Theory 25 (2005) 103-119, doi: 10.7151/dmgt.1265.

[6] M. Kwaśnik and I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000) 139-146.

[7] A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301, doi: 10.1016/S0012-365X(96)00064-7.

[8] I. Włoch, Generalized Fibonacci polynomial of graphs, Ars Combin. 68 (2003) 49-55.