Minimal non-selfcentric radially-maximal graphs of radius 4
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 603-610.

Voir la notice de l'article provenant de la source Library of Science

There is a hypothesis that a non-selfcentric radially-maximal graph of radius r has at least 3r-1 vertices. Using some recent results we prove this hypothesis for r = 4.
Keywords: non-selfcentric, radially-maximal, critical, center, radius, planar graph
@article{DMGT_2007_27_3_a17,
     author = {Knor, Martin},
     title = {Minimal non-selfcentric radially-maximal graphs of radius 4},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {603--610},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a17/}
}
TY  - JOUR
AU  - Knor, Martin
TI  - Minimal non-selfcentric radially-maximal graphs of radius 4
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 603
EP  - 610
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a17/
LA  - en
ID  - DMGT_2007_27_3_a17
ER  - 
%0 Journal Article
%A Knor, Martin
%T Minimal non-selfcentric radially-maximal graphs of radius 4
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 603-610
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a17/
%G en
%F DMGT_2007_27_3_a17
Knor, Martin. Minimal non-selfcentric radially-maximal graphs of radius 4. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 603-610. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a17/

[1] F. Gliviak, M. Knor and L'. Soltés, On radially maximal graphs, Australasian J. Combin. 9 (1994) 275-284.

[2] A. Haviar, P. Hrnciar and G. Monoszová, Eccentric sequences and cycles in graphs, Acta Univ. M. Belii Math. 11 (2004) 7-25.