An approximation algorithm for the total covering problem
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 553-558.

Voir la notice de l'article provenant de la source Library of Science

We introduce a 2-factor approximation algorithm for the minimum total covering number problem.
Keywords: covering, total covering, approximation algorithm
@article{DMGT_2007_27_3_a11,
     author = {Hatami, Pooya},
     title = {An approximation algorithm for the total covering problem},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {553--558},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a11/}
}
TY  - JOUR
AU  - Hatami, Pooya
TI  - An approximation algorithm for the total covering problem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 553
EP  - 558
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a11/
LA  - en
ID  - DMGT_2007_27_3_a11
ER  - 
%0 Journal Article
%A Hatami, Pooya
%T An approximation algorithm for the total covering problem
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 553-558
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a11/
%G en
%F DMGT_2007_27_3_a11
Hatami, Pooya. An approximation algorithm for the total covering problem. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 553-558. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a11/

[1] Y. Alavi, M. Behzad, L.M. Leśniak-Foster and E.A. Nordhaus, Total matchings and total coverings of graphs, J. Graph Theory 1 (1977) 135-140, doi: 10.1002/jgt.3190010209.

[2] Y. Alavi, J. Liu, F.J. Wang and F.Z. Zhang, On total covers of graphs, Discrete Math. 100 (1992) 229-233. Special volume to mark the centennial of Julius Petersen's ``Die Theorie der regulären Graphs'', Part I, doi: 10.1016/0012-365X(92)90643-T.

[3] I. Dinur and S. Safra, On the hardness of approximating minimum vertex cover, Annals of Mathematics 162 (2005) 439-485, doi: 10.4007/annals.2005.162.439.

[4] R. Duh and M. Fürer, Approximation of k-set cover by semi-local optimization, Proceedings of STOC '97: the 29th Annual ACM Symposium on Theory of Computing, (1997) 256-264.

[5] P. Erdös and A. Meir, On total matching numbers and total covering numbers of complementary graphs, Discrete Math. 19 (1977) 229-233, doi: 10.1016/0012-365X(77)90102-9.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, vol. 208 of Monographs and Textbooks in Pure and Applied Mathematics (Marcel Dekker Inc., New York, 1998).

[7] S.M. Hedetniemi, S.T. Hedetniemi, R. Laskar, A. McRae and A. Majumdar, Domination, independence and irredundance in total graphs: a brief survey, in: Y. Alavi and A. Schwenk, eds, Graph Theory, Combinatorics and Applications: Proceedings of the 7th Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 671-683. John Wiley and Sons, Inc.

[8] D.S. Johnson, Approximation algorithms for combinatorial problems, Journal of Computer and System Sciences (1974) 256-278, doi: 10.1016/S0022-0000(74)80044-9.

[9] S. Khot and O. Regev, Vertex cover might be hard to approximate within 2-ε, in: Proceedings of the 17th IEEE Conference on Computational Complexity (2002) 379-386.

[10] A. Majumdar, Neighborhood hypergraphs, PhD thesis, Clemson University, Department of Mathematical Sciences, 1992.

[11] D.F. Manlove, On the algorithmic complexity of twelve covering and independence parameters of graphs, Discrete Appl. Math. 91 (1999) 155-177, doi: 10.1016/S0166-218X(98)00147-4.

[12] A. Meir, On total covering and matching of graphs, J. Combin. Theory (B) 24 (1978) 164-168, doi: 10.1016/0095-8956(78)90017-5.

[13] U. Peled and F. Sun, Total matchings and total coverings of threshold graphs, Discrete Appl. Math. 49 (1994) 325-330. Viewpoints on optimization (Grimentz, 1990; Boston, MA, 1991).