A proof of the crossing number of $K_{3,n}$ in a surface
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 549-551
Cet article a éte moissonné depuis la source Library of Science
In this note we give a simple proof of a result of Richter and Siran by basic counting method, which says that the crossing number of K_3,n in a surface with Euler genus ε is
Keywords:
crossing number, bipartite graph, surface
@article{DMGT_2007_27_3_a10,
author = {Ho, Pak},
title = {A proof of the crossing number of $K_{3,n}$ in a surface},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {549--551},
year = {2007},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a10/}
}
Ho, Pak. A proof of the crossing number of $K_{3,n}$ in a surface. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 3, pp. 549-551. http://geodesic.mathdoc.fr/item/DMGT_2007_27_3_a10/
[1] R.K. Guy and T.A. Jenkyns, The toroidal crossing number of $K_{m,n}$, J. Combin. Theory 6 (1969) 235-250, doi: 10.1016/S0021-9800(69)80084-0.
[2] R.B. Richter and J. Siran, The crossing number of $K_{3,n}$ in a surface, J. Graph Theory 21 (1996) 51-54, doi: 10.1002/(SICI)1097-0118(199601)21:151::AID-JGT7>3.0.CO;2-L
[3] G. Ringel, Das Geschlecht des vollständigen paaren Graphen, Abh. Math. Sem. Univ. Hamburg 28 (1965) 139-150, doi: 10.1007/BF02993245.
[4] G. Ringel, Der vollständige paare Graph auf nichtorientierbaren Flächen, J. Reine Angew. Math. 220 (1965) 88-93, doi: 10.1515/crll.1965.220.88.