Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_2_a11, author = {Galeana-S\'anchez, Hortensia and G\'omez, Ricardo}, title = {(k,l)-kernels, (k,l)-semikernels, {k-Grundy} functions and duality for state splittings}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {359--371}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a11/} }
TY - JOUR AU - Galeana-Sánchez, Hortensia AU - Gómez, Ricardo TI - (k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 359 EP - 371 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a11/ LA - en ID - DMGT_2007_27_2_a11 ER -
%0 Journal Article %A Galeana-Sánchez, Hortensia %A Gómez, Ricardo %T (k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings %J Discussiones Mathematicae. Graph Theory %D 2007 %P 359-371 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a11/ %G en %F DMGT_2007_27_2_a11
Galeana-Sánchez, Hortensia; Gómez, Ricardo. (k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 359-371. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a11/
[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).
[2] M. Boyle and R. Wagoner, Positive algebraic K-theory and shifts of finite type. Modern dynamical systems and applications (Cambridge University Press, 2004) 45-66.
[3] H. Galeana-Sánchez, On the existence of (k,l)-kernels in digraphs, Discrete Math. 85 (1990) 99-102, doi: 10.1016/0012-365X(90)90167-G.
[4] H. Galeana-Sánchez and Xueliang Li, Semikernels and (k,l)-kernels in digraphs, SIAM J. Disc. Math. 11 (1998) 340-346.
[5] H. Galeana-Sánchez, L. Pastrana Ramí rez and H.A. Rincón Mejí a, Semikernels, quasikernels and Grundy functions in the line digraph, SIAM J. Disc. Math. 4 (1991) 80-83. Discrete Math. 59 (1986) 257-265.
[6] R. Gómez, Positive K-theory for finitary isomorphisms of Markov chains, Ergodic Theory and Dynam. Systems. 23 (2003) 1485-1504, doi: 10.1017/S0143385702001700.
[7] M. Harminc, Solutions and kernels of a directed graph, Math. Slovaca 32 (1982) 263-267.
[8] B. Kitchens, Symbolic dynamics. One-sided, two-sided and countable state Markov shifts (Springer-Verlag, 1998).
[9] M. Kwaśnik, On the (k,l)-kernels, Graph Theory ( agów, 1981), 114-121, Lecture Notes in Math., 1018 (Springer, Berlin, 1983).
[10] M. Kwaśnik, A. Włoch and I. Włoch, Some remarks about (k,l)-kernels in directed and undirected graphs, Discuss. Math. 13 (1993) 29-37.
[11] M. Kucharska and M. Kwaśnik, On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ, Discuss. Math. Graph Theory 21 (2001) 95-109, doi: 10.7151/dmgt.1135.
[12] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding (Cambridge University Press, 1995), doi: 10.1017/CBO9780511626302.
[13] V. Neumann-Lara, Seminuclei of a digraph, (Spanish) An. Inst. Mat. Univ. Nac. Autónoma México 11 (1971) 55-62.