(k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 359-371.

Voir la notice de l'article provenant de la source Library of Science

Line digraphs can be obtained by sequences of state splittings, a particular kind of operation widely used in symbolic dynamics [12]. Properties of line digraphs inherited from the source have been studied, for instance in [7] Harminc showed that the cardinalities of the sets of kernels and solutions (kernel's dual definition) of a digraph and its line digraph coincide. We extend this for (k,l)-kernels in the context of state splittings and also look at (k,l)-semikernels, k-Grundy functions and their duals.
Keywords: state splitting, line digraph, kernel, Grundy function, duality
@article{DMGT_2007_27_2_a11,
     author = {Galeana-S\'anchez, Hortensia and G\'omez, Ricardo},
     title = {(k,l)-kernels, (k,l)-semikernels, {k-Grundy} functions and duality for state splittings},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {359--371},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a11/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Gómez, Ricardo
TI  - (k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 359
EP  - 371
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a11/
LA  - en
ID  - DMGT_2007_27_2_a11
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Gómez, Ricardo
%T (k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 359-371
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a11/
%G en
%F DMGT_2007_27_2_a11
Galeana-Sánchez, Hortensia; Gómez, Ricardo. (k,l)-kernels, (k,l)-semikernels, k-Grundy functions and duality for state splittings. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 2, pp. 359-371. http://geodesic.mathdoc.fr/item/DMGT_2007_27_2_a11/

[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).

[2] M. Boyle and R. Wagoner, Positive algebraic K-theory and shifts of finite type. Modern dynamical systems and applications (Cambridge University Press, 2004) 45-66.

[3] H. Galeana-Sánchez, On the existence of (k,l)-kernels in digraphs, Discrete Math. 85 (1990) 99-102, doi: 10.1016/0012-365X(90)90167-G.

[4] H. Galeana-Sánchez and Xueliang Li, Semikernels and (k,l)-kernels in digraphs, SIAM J. Disc. Math. 11 (1998) 340-346.

[5] H. Galeana-Sánchez, L. Pastrana Ramí rez and H.A. Rincón Mejí a, Semikernels, quasikernels and Grundy functions in the line digraph, SIAM J. Disc. Math. 4 (1991) 80-83. Discrete Math. 59 (1986) 257-265.

[6] R. Gómez, Positive K-theory for finitary isomorphisms of Markov chains, Ergodic Theory and Dynam. Systems. 23 (2003) 1485-1504, doi: 10.1017/S0143385702001700.

[7] M. Harminc, Solutions and kernels of a directed graph, Math. Slovaca 32 (1982) 263-267.

[8] B. Kitchens, Symbolic dynamics. One-sided, two-sided and countable state Markov shifts (Springer-Verlag, 1998).

[9] M. Kwaśnik, On the (k,l)-kernels, Graph Theory ( agów, 1981), 114-121, Lecture Notes in Math., 1018 (Springer, Berlin, 1983).

[10] M. Kwaśnik, A. Włoch and I. Włoch, Some remarks about (k,l)-kernels in directed and undirected graphs, Discuss. Math. 13 (1993) 29-37.

[11] M. Kucharska and M. Kwaśnik, On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ, Discuss. Math. Graph Theory 21 (2001) 95-109, doi: 10.7151/dmgt.1135.

[12] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding (Cambridge University Press, 1995), doi: 10.1017/CBO9780511626302.

[13] V. Neumann-Lara, Seminuclei of a digraph, (Spanish) An. Inst. Mat. Univ. Nac. Autónoma México 11 (1971) 55-62.