Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2007_27_1_a9, author = {Kchikech, Mustapha and Khennoufa, Riadh and Togni, Olivier}, title = {Linear and cyclic radio k-labelings of trees}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {105--123}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a9/} }
TY - JOUR AU - Kchikech, Mustapha AU - Khennoufa, Riadh AU - Togni, Olivier TI - Linear and cyclic radio k-labelings of trees JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 105 EP - 123 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a9/ LA - en ID - DMGT_2007_27_1_a9 ER -
Kchikech, Mustapha; Khennoufa, Riadh; Togni, Olivier. Linear and cyclic radio k-labelings of trees. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 105-123. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a9/
[1] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of cycles, in: Proceedings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000) 144 (2000) 129-141.
[2] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127 (2002) 57-69.
[3] G. Chartrand, D. Erwin, P. Zhang and F. Harary, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85.
[4] G. Chartrand, L. Nebeský and P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory 24 (2004) 5-21, doi: 10.7151/dmgt.1209.
[5] G. Chartrand, T. Thomas and P. Zhang, A new look at Hamiltonian walks, Bull. Inst. Combin. Appl. 42 (2004) 37-52.
[6] G. Chartrand, T. Thomas, P. Zhang and V. Saenpholphat, On the Hamiltonian number of a graph, Congr. Numer. 165 (2003) 51-64.
[7] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Disc. Math. 5 (1992) 586-595, doi: 10.1137/0405048.
[8] J. van den Heuvel, R. Leese and M. Shepherd, Graph labeling and radio channel assignment, J. Graph Theory 29 (1998) 263-283, doi: 10.1002/(SICI)1097-0118(199812)29:4263::AID-JGT5>3.0.CO;2-V
[9] M. Kchikech, R. Khennoufa and O. Togni, Radio k-labelings for cartesian products of graphs, in: Proceedings of the 7th International Conference on Graph Theory (ICGT'05), Electronic Notes in Discrete Mathematics 22 (2005) 347-352. Extended version submited to Discrete Mathematics, doi: 10.1016/j.endm.2005.06.078.
[10] R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohemica 130 (2005) 277-282.
[11] D. Král, L.-D. Tong and X. Zhu, Upper Hamiltonian numbers and Hamiltonian spectra of graphs, Australasian J. Combin. 35 (2006) 329-340.
[12] R.A. Leese and S.D. Noble, Cyclic labellings with constraints at two distances, The Electronic Journal of Combinatorics 11 (2004).
[13] D. Liu and X. Zhu, Multi-level distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (2005) 610-621, doi: 10.1137/S0895480102417768.
[14] V. Saenpholphat, F. Okamoto and P. Zhang, Measures of traceability in graphs, Math. Bohemica 131 (2006) 63-84.
[15] N. Schabanel, Radio Channel Assignment, (PhD Thesis, Merton College Oxford, 1998).