Linear and cyclic radio k-labelings of trees
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 105-123.

Voir la notice de l'article provenant de la source Library of Science

Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that
Keywords: graph theory, radio channel assignment, cyclic and linear radio k-labeling
@article{DMGT_2007_27_1_a9,
     author = {Kchikech, Mustapha and Khennoufa, Riadh and Togni, Olivier},
     title = {Linear and cyclic radio k-labelings of trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {105--123},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a9/}
}
TY  - JOUR
AU  - Kchikech, Mustapha
AU  - Khennoufa, Riadh
AU  - Togni, Olivier
TI  - Linear and cyclic radio k-labelings of trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 105
EP  - 123
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a9/
LA  - en
ID  - DMGT_2007_27_1_a9
ER  - 
%0 Journal Article
%A Kchikech, Mustapha
%A Khennoufa, Riadh
%A Togni, Olivier
%T Linear and cyclic radio k-labelings of trees
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 105-123
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a9/
%G en
%F DMGT_2007_27_1_a9
Kchikech, Mustapha; Khennoufa, Riadh; Togni, Olivier. Linear and cyclic radio k-labelings of trees. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 105-123. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a9/

[1] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of cycles, in: Proceedings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000) 144 (2000) 129-141.

[2] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127 (2002) 57-69.

[3] G. Chartrand, D. Erwin, P. Zhang and F. Harary, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85.

[4] G. Chartrand, L. Nebeský and P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory 24 (2004) 5-21, doi: 10.7151/dmgt.1209.

[5] G. Chartrand, T. Thomas and P. Zhang, A new look at Hamiltonian walks, Bull. Inst. Combin. Appl. 42 (2004) 37-52.

[6] G. Chartrand, T. Thomas, P. Zhang and V. Saenpholphat, On the Hamiltonian number of a graph, Congr. Numer. 165 (2003) 51-64.

[7] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Disc. Math. 5 (1992) 586-595, doi: 10.1137/0405048.

[8] J. van den Heuvel, R. Leese and M. Shepherd, Graph labeling and radio channel assignment, J. Graph Theory 29 (1998) 263-283, doi: 10.1002/(SICI)1097-0118(199812)29:4263::AID-JGT5>3.0.CO;2-V

[9] M. Kchikech, R. Khennoufa and O. Togni, Radio k-labelings for cartesian products of graphs, in: Proceedings of the 7th International Conference on Graph Theory (ICGT'05), Electronic Notes in Discrete Mathematics 22 (2005) 347-352. Extended version submited to Discrete Mathematics, doi: 10.1016/j.endm.2005.06.078.

[10] R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohemica 130 (2005) 277-282.

[11] D. Král, L.-D. Tong and X. Zhu, Upper Hamiltonian numbers and Hamiltonian spectra of graphs, Australasian J. Combin. 35 (2006) 329-340.

[12] R.A. Leese and S.D. Noble, Cyclic labellings with constraints at two distances, The Electronic Journal of Combinatorics 11 (2004).

[13] D. Liu and X. Zhu, Multi-level distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (2005) 610-621, doi: 10.1137/S0895480102417768.

[14] V. Saenpholphat, F. Okamoto and P. Zhang, Measures of traceability in graphs, Math. Bohemica 131 (2006) 63-84.

[15] N. Schabanel, Radio Channel Assignment, (PhD Thesis, Merton College Oxford, 1998).