A note on packing of two copies of a hypergraph
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 45-49.

Voir la notice de l'article provenant de la source Library of Science

A 2-packing of a hypergraph is a permutation σ on V() such that if an edge e belongs to (), then σ (e) does not belong to ().
Keywords: packing, hypergraphs
@article{DMGT_2007_27_1_a4,
     author = {Pil\'sniak, Monika and Wo\'zniak, Mariusz},
     title = {A note on packing of two copies of a hypergraph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {45--49},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a4/}
}
TY  - JOUR
AU  - Pilśniak, Monika
AU  - Woźniak, Mariusz
TI  - A note on packing of two copies of a hypergraph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 45
EP  - 49
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a4/
LA  - en
ID  - DMGT_2007_27_1_a4
ER  - 
%0 Journal Article
%A Pilśniak, Monika
%A Woźniak, Mariusz
%T A note on packing of two copies of a hypergraph
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 45-49
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a4/
%G en
%F DMGT_2007_27_1_a4
Pilśniak, Monika; Woźniak, Mariusz. A note on packing of two copies of a hypergraph. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 45-49. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a4/

[1] A. Benhocine and A.P. Wojda, On self-complementation, J. Graph Theory 8 (1985) 335-341, doi: 10.1002/jgt.3190090305.

[2] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).

[3] D. Burns and S. Schuster, Every (n, n-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.

[4] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0.

[5] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997) 1-78.

[6] M. Woźniak, Packing of graphs and permutations - a survey, Discrete Math. 276 (2004) 379-391, doi: 10.1016/S0012-365X(03)00296-6.

[7] H.P. Yap, Some Topics in Graph Theory, London Math. Society, Lecture Notes Series, Vol. 108 (Cambridge University Press, Cambridge, 1986).

[8] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.