A note on uniquely H-colourable graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 39-44.

Voir la notice de l'article provenant de la source Library of Science

For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.
Keywords: graph homomorphisms, core graphs, uniquely H-colourable
@article{DMGT_2007_27_1_a3,
     author = {Bonato, Anthony},
     title = {A note on uniquely {H-colourable} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a3/}
}
TY  - JOUR
AU  - Bonato, Anthony
TI  - A note on uniquely H-colourable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 39
EP  - 44
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a3/
LA  - en
ID  - DMGT_2007_27_1_a3
ER  - 
%0 Journal Article
%A Bonato, Anthony
%T A note on uniquely H-colourable graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 39-44
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a3/
%G en
%F DMGT_2007_27_1_a3
Bonato, Anthony. A note on uniquely H-colourable graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a3/

[1] A. Bonato, A family of universal pseudo-homogeneous G-colourable graphs, Discrete Math. 247 (2002) 13-23, doi: 10.1016/S0012-365X(01)00158-3.

[2] A. Bonato, Homomorphisms and amalgamation, Discrete Math. 270 (2003) 32-41, doi: 10.1016/S0012-365X(02)00864-6.

[3] K. Collins and B. Shemmer, Constructions of 3-colorable cores, SIAM J. Discrete Math. 16 (2002) 74-80, doi: 10.1137/S0895480101390898.

[4] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487-495, doi: 10.1002/jgt.3190090409.

[5] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colorable graphs, J. Combin. Theory 6 (1969) 264-270, doi: 10.1016/S0021-9800(69)80086-4.

[6] P. Hell and J. Nesetril, Graphs and Homomorphisms (Oxford University Press, Oxford, 2004), doi: 10.1093/acprof:oso/9780198528173.001.0001.

[7] J. Kratochvíl and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X.

[8] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discuss. Math. Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.

[9] X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory 23 (1996) 33-41, doi: 10.1002/(SICI)1097-0118(199609)23:133::AID-JGT3>3.0.CO;2-L

[10] X. Zhu, Construction of uniquely H-colorable graphs, J. Graph Theory 30 (1999) 1-6, doi: 10.1002/(SICI)1097-0118(199901)30:11::AID-JGT1>3.0.CO;2-P