More on even [a,b]-factors in graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 193-204.

Voir la notice de l'article provenant de la source Library of Science

In this note we give a characterization of the complete bipartite graphs which have an even (odd) [a,b]-factor. For general graphs we prove that an a-edge connected graph G with n vertices and with δ(G) ≥ maxa+1,an/(a+b) + a - 2 has an even [a,b]-factor, where a and b are even and 2 ≤ a ≤ b. With regard to the edge-connectivity this result is slightly better than one of the similar results obtained by Kouider and Vestergaard in 2004 and unlike their results, this result has no restriction on the order of graphs.
Keywords: [a,b]-factor, spanning graph, edge-connectivity
@article{DMGT_2007_27_1_a16,
     author = {Khodkar, Abdollah and Xu, Rui},
     title = {More on even [a,b]-factors in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {193--204},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a16/}
}
TY  - JOUR
AU  - Khodkar, Abdollah
AU  - Xu, Rui
TI  - More on even [a,b]-factors in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 193
EP  - 204
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a16/
LA  - en
ID  - DMGT_2007_27_1_a16
ER  - 
%0 Journal Article
%A Khodkar, Abdollah
%A Xu, Rui
%T More on even [a,b]-factors in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 193-204
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a16/
%G en
%F DMGT_2007_27_1_a16
Khodkar, Abdollah; Xu, Rui. More on even [a,b]-factors in graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 193-204. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a16/

[1] M.-C. Cai, On some factor theorems of graphs, Discrete Math. 98 (1991) 223-229, doi: 10.1016/0012-365X(91)90378-F.

[2] M. Kouider and P.D. Vestergaard, On even [2,b] -factors in graphs, Australasian J. Combin. 27 (2003) 139-147.

[3] M. Kouider and P.D. Vestergaard, Even [a,b] -factors in graphs, Discuss. Math. Graph Theory 24 (2004) 431-441, doi: 10.7151/dmgt.1242.

[4] M. Kouider and P.D. Vestergaard, Connected factors in graphs - a survey, Graphs and Combin. 21 (2005) 1-26, doi: 10.1007/s00373-004-0587-7.

[5] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970) 391-416, doi: 10.1016/S0021-9800(70)80033-3.

[6] D.B. West, Introduction to Graph Theory (Prentice-Hall, Inc, 2000).