Cycles through specified vertices in triangle-free graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 179-191.

Voir la notice de l'article provenant de la source Library of Science

Let G be a triangle-free graph with δ(G) ≥ 2 and σ₄(G) ≥ |V(G)| + 2. Let S ⊂ V(G) consist of less than σ₄/4+ 1 vertices. We prove the following. If all vertices of S have degree at least three, then there exists a cycle C containing S. Both the upper bound on |S| and the lower bound on σ₄ are best possible.
Keywords: cycle, path, triangle-free graph
@article{DMGT_2007_27_1_a15,
     author = {Paulusma, Daniel and Yoshimoto, Kiyoshi},
     title = {Cycles through specified vertices in triangle-free graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {179--191},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/}
}
TY  - JOUR
AU  - Paulusma, Daniel
AU  - Yoshimoto, Kiyoshi
TI  - Cycles through specified vertices in triangle-free graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 179
EP  - 191
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/
LA  - en
ID  - DMGT_2007_27_1_a15
ER  - 
%0 Journal Article
%A Paulusma, Daniel
%A Yoshimoto, Kiyoshi
%T Cycles through specified vertices in triangle-free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 179-191
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/
%G en
%F DMGT_2007_27_1_a15
Paulusma, Daniel; Yoshimoto, Kiyoshi. Cycles through specified vertices in triangle-free graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 179-191. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/

[1] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, in: Progress in Graph Theory, J.A. Bondy, U.S.R. Murty, eds., (Academic Press, 1984), 81-87.

[2] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 137-155.

[3] J.A. Bondy, Longest Paths and Cycles in Graphs of High Degree, Research Report CORR 80-16 (1980).

[4] J.A. Bondy and L. Lovász, Cycles through specified vertices of a graph, Combinatorica 1 (1981) 117-140, doi: 10.1007/BF02579268.

[5] H. Broersma, H. Li, J. Li, F. Tian and H.J. Veldman, Cycles through subsets with large degree sums, Discrete Math. 171 (1997) 43-54, doi: 10.1016/S0012-365X(96)00071-4.

[6] R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer (2000).

[7] Y. Egawa, R. Glas and S.C. Locke, Cycles and paths trough specified vertices in k-connected graphs, J. Combin. Theory (B) 52 (1991) 20-29, doi: 10.1016/0095-8956(91)90086-Y.

[8] J. Harant, On paths and cycles through specified vertices, Discrete Math. 286 (2004) 95-98, doi: 10.1016/j.disc.2003.11.059.

[9] H. Enomoto, J. van den Heuvel, A. Kaneko and A. Saito, Relative length of long paths and cycles in graphs with large degree sums, J. Graph Theory 20 (1995) 213-225, doi: 10.1002/jgt.3190200210.

[10] D.A. Holton, Cycles through specified vertices in k-connected regular graphs, Ars Combin. 13 (1982) 129-143.

[11] O. Ore, Note on hamiltonian circuits, American Mathematical Monthly 67 (1960) 55, doi: 10.2307/2308928.

[12] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Math. 145 (1995) 201-210, doi: 10.1016/0012-365X(94)00036-I.

[13] D. Paulusma and K. Yoshimoto, Relative length of longest paths and longest cycles in triangle-free graphs, submitted, http://www.math.cst.nihon-u.ac.jp/yosimoto/paper/related_length1_sub.pdf.

[14] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory (B) 47 (1989) 220-230, doi: 10.1016/0095-8956(89)90021-X.

[15] L. Stacho, Cycles through specified vertices in 1-tough graphs, Ars Combin. 56 (2000) 263-269.

[16] K. Yoshimoto, Edge degree conditions and all longest cycles which are dominating, submitted.

[17] S.J. Zheng, Cycles and paths through specified vertices, Journal of Nanjing Normal University, Natural Science Edition, Nanjing Shida Xuebao, Ziran Kexue Ban 23 (2000) 9-13.