Cycles through specified vertices in triangle-free graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 179-191

Voir la notice de l'article provenant de la source Library of Science

Let G be a triangle-free graph with δ(G) ≥ 2 and σ₄(G) ≥ |V(G)| + 2. Let S ⊂ V(G) consist of less than σ₄/4+ 1 vertices. We prove the following. If all vertices of S have degree at least three, then there exists a cycle C containing S. Both the upper bound on |S| and the lower bound on σ₄ are best possible.
Keywords: cycle, path, triangle-free graph
@article{DMGT_2007_27_1_a15,
     author = {Paulusma, Daniel and Yoshimoto, Kiyoshi},
     title = {Cycles through specified vertices in triangle-free graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {179--191},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/}
}
TY  - JOUR
AU  - Paulusma, Daniel
AU  - Yoshimoto, Kiyoshi
TI  - Cycles through specified vertices in triangle-free graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 179
EP  - 191
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/
LA  - en
ID  - DMGT_2007_27_1_a15
ER  - 
%0 Journal Article
%A Paulusma, Daniel
%A Yoshimoto, Kiyoshi
%T Cycles through specified vertices in triangle-free graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 179-191
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/
%G en
%F DMGT_2007_27_1_a15
Paulusma, Daniel; Yoshimoto, Kiyoshi. Cycles through specified vertices in triangle-free graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 179-191. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/