Cycles through specified vertices in triangle-free graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 179-191
Voir la notice de l'article provenant de la source Library of Science
Let G be a triangle-free graph with δ(G) ≥ 2 and σ₄(G) ≥ |V(G)| + 2. Let S ⊂ V(G) consist of less than σ₄/4+ 1 vertices. We prove the following. If all vertices of S have degree at least three, then there exists a cycle C containing S. Both the upper bound on |S| and the lower bound on σ₄ are best possible.
Keywords:
cycle, path, triangle-free graph
@article{DMGT_2007_27_1_a15,
author = {Paulusma, Daniel and Yoshimoto, Kiyoshi},
title = {Cycles through specified vertices in triangle-free graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {179--191},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/}
}
TY - JOUR AU - Paulusma, Daniel AU - Yoshimoto, Kiyoshi TI - Cycles through specified vertices in triangle-free graphs JO - Discussiones Mathematicae. Graph Theory PY - 2007 SP - 179 EP - 191 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/ LA - en ID - DMGT_2007_27_1_a15 ER -
Paulusma, Daniel; Yoshimoto, Kiyoshi. Cycles through specified vertices in triangle-free graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 179-191. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a15/