Total domination of Cartesian products of graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 175-178.

Voir la notice de l'article provenant de la source Library of Science

Let γₜ(G) and γ_pr(G) denote the total domination and the paired domination numbers of graph G, respectively, and let G □ H denote the Cartesian product of graphs G and H. In this paper, we show that γₜ(G)γₜ(H) ≤ 5γₜ(G □ H), which improves the known result γₜ(G)γₜ(H) ≤ 6γₜ(G □ H) given by Henning and Rall.
Keywords: total domination number, Cartesian product, Vizing's conjecture
@article{DMGT_2007_27_1_a14,
     author = {Hou, Xinmin},
     title = {Total domination of {Cartesian} products of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {175--178},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a14/}
}
TY  - JOUR
AU  - Hou, Xinmin
TI  - Total domination of Cartesian products of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 175
EP  - 178
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a14/
LA  - en
ID  - DMGT_2007_27_1_a14
ER  - 
%0 Journal Article
%A Hou, Xinmin
%T Total domination of Cartesian products of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 175-178
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a14/
%G en
%F DMGT_2007_27_1_a14
Hou, Xinmin. Total domination of Cartesian products of graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 175-178. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a14/

[1] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.

[2] W.E. Clark and S. Suen, An inequality related to Vizing's conjecture, Electron. J. Combin. 7 (2000), No.1, Note 4, 3pp. (electronic).

[3] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs and Combinatorics 21 (2005) 63-69, doi: 10.1007/s00373-004-0586-8.

[4] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206, doi: 10.1002/(SICI)1097-0037(199810)32:3199::AID-NET4>3.0.CO;2-F

[5] V.G. Vizing, Some unsolved problems in graph theory, Usp. Mat. Nauk 23 (1968), no. 6(144) 117-134.