Total domination of Cartesian products of graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 175-178
Cet article a éte moissonné depuis la source Library of Science
Let γₜ(G) and γ_pr(G) denote the total domination and the paired domination numbers of graph G, respectively, and let G □ H denote the Cartesian product of graphs G and H. In this paper, we show that γₜ(G)γₜ(H) ≤ 5γₜ(G □ H), which improves the known result γₜ(G)γₜ(H) ≤ 6γₜ(G □ H) given by Henning and Rall.
Keywords:
total domination number, Cartesian product, Vizing's conjecture
@article{DMGT_2007_27_1_a14,
author = {Hou, Xinmin},
title = {Total domination of {Cartesian} products of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {175--178},
year = {2007},
volume = {27},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a14/}
}
Hou, Xinmin. Total domination of Cartesian products of graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 175-178. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a14/
[1] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.
[2] W.E. Clark and S. Suen, An inequality related to Vizing's conjecture, Electron. J. Combin. 7 (2000), No.1, Note 4, 3pp. (electronic).
[3] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs and Combinatorics 21 (2005) 63-69, doi: 10.1007/s00373-004-0586-8.
[4] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199-206, doi: 10.1002/(SICI)1097-0037(199810)32:3199::AID-NET4>3.0.CO;2-F
[5] V.G. Vizing, Some unsolved problems in graph theory, Usp. Mat. Nauk 23 (1968), no. 6(144) 117-134.