Improved upper bounds for nearly antipodal chromatic number of paths
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 159-174.

Voir la notice de l'article provenant de la source Library of Science

For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that ac'(Pₙ) ≤ n-22 + 2 for every positive integer n, where ac'(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that ac'(Pₙ) ≤ n-22 - n/2 - ⎣10/n⎦ + 7 if n is even positive integer and n ≥ 10, and ac'(Pₙ) ≤ n-22 - (n-1)/2 - ⎣13/n⎦ + 8 if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.
Keywords: radio colorings, nearly antipodal chromatic number, paths
@article{DMGT_2007_27_1_a13,
     author = {Shen, Yu-Fa and Zheng, Guo-Ping and He, Wen-Jie},
     title = {Improved upper bounds for nearly antipodal chromatic number of paths},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {159--174},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a13/}
}
TY  - JOUR
AU  - Shen, Yu-Fa
AU  - Zheng, Guo-Ping
AU  - He, Wen-Jie
TI  - Improved upper bounds for nearly antipodal chromatic number of paths
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 159
EP  - 174
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a13/
LA  - en
ID  - DMGT_2007_27_1_a13
ER  - 
%0 Journal Article
%A Shen, Yu-Fa
%A Zheng, Guo-Ping
%A He, Wen-Jie
%T Improved upper bounds for nearly antipodal chromatic number of paths
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 159-174
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a13/
%G en
%F DMGT_2007_27_1_a13
Shen, Yu-Fa; Zheng, Guo-Ping; He, Wen-Jie. Improved upper bounds for nearly antipodal chromatic number of paths. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 159-174. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a13/

[1] G. Chartrand, D. Erwin, F. Harary and P. Zhang, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77-85.

[2] G. Chartrand, D. Erwin and P. Zhang, A graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl. 43 (2005) 43-57.

[3] G. Chartrand, D. Erwin and P. Zhang, Radio antipodal colorings of graphs, Math. Bohem. 127 (2002) 57-69.

[4] G. Chartrand, L. Nebeský and P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory 24 (2004) 5-21, doi: 10.7151/dmgt.1209.

[5] D. Fotakis, G. Pantziou, G. Pentaris and P. Spirakis, Frequency assignment in mobile and radio networks, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 45 (1999) 73-90.

[6] R. Khennoufa and O. Togni, A note on radio antipodal colorings of paths, Math. Bohem. 130 (2005) 277-282.

[7] J. Van den Heuvel, R.A. Leese and M.A. Shepherd, Graph labeling and radio channel assignment, J. Graph Theory 29 (1998) 263-283, doi: 10.1002/(SICI)1097-0118(199812)29:4263::AID-JGT5>3.0.CO;2-V