Spectral study of alliances in graphs
Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 143-157.

Voir la notice de l'article provenant de la source Library of Science

In this paper we obtain several tight bounds on different types of alliance numbers of a graph, namely (global) defensive alliance number, global offensive alliance number and global dual alliance number. In particular, we investigate the relationship between the alliance numbers of a graph and its algebraic connectivity, its spectral radius, and its Laplacian spectral radius.
Keywords: defensive alliance, offensive alliance, dual alliance, domination, spectral radius, graph eigenvalues.
@article{DMGT_2007_27_1_a12,
     author = {Rodr{\'\i}guez-Velazquez, Juan and Almira, Jose},
     title = {Spectral study of alliances in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {143--157},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a12/}
}
TY  - JOUR
AU  - Rodríguez-Velazquez, Juan
AU  - Almira, Jose
TI  - Spectral study of alliances in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2007
SP  - 143
EP  - 157
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a12/
LA  - en
ID  - DMGT_2007_27_1_a12
ER  - 
%0 Journal Article
%A Rodríguez-Velazquez, Juan
%A Almira, Jose
%T Spectral study of alliances in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2007
%P 143-157
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a12/
%G en
%F DMGT_2007_27_1_a12
Rodríguez-Velazquez, Juan; Almira, Jose. Spectral study of alliances in graphs. Discussiones Mathematicae. Graph Theory, Tome 27 (2007) no. 1, pp. 143-157. http://geodesic.mathdoc.fr/item/DMGT_2007_27_1_a12/

[1] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Math. J.25 (100) (1975) 619-633.

[2] S.M. Hedetniemi, S.T. Hedetniemi and P. Kristiansen, Alliances in graphs, J. Combin. Math. Combin. Comput. 48 (2004) 157-177.

[3] T.W. Haynes, S.T Hedetniemi and M.A. Henning, Global defensive alliances in graphs, Electron. J. Combin. 10 (2003), Research Paper 47, 13 pp.

[4] J.A. Rodríguez, Laplacian eigenvalues and partition problems in hypergraphs, submitted.

[5] J.A. Rodríguez and J.M. Sigarreta, Global alliances in planar graphs, submitted.