A lower bound on the independence number of a graph in terms of degrees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 431-437

Voir la notice de l'article provenant de la source Library of Science

For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.
Keywords: independence, stability, algorithm
@article{DMGT_2006_26_3_a7,
     author = {Harant, Jochen and Schiermeyer, Ingo},
     title = {A lower bound on the independence number of a graph in terms of degrees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {431--437},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a7/}
}
TY  - JOUR
AU  - Harant, Jochen
AU  - Schiermeyer, Ingo
TI  - A lower bound on the independence number of a graph in terms of degrees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 431
EP  - 437
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a7/
LA  - en
ID  - DMGT_2006_26_3_a7
ER  - 
%0 Journal Article
%A Harant, Jochen
%A Schiermeyer, Ingo
%T A lower bound on the independence number of a graph in terms of degrees
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 431-437
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a7/
%G en
%F DMGT_2006_26_3_a7
Harant, Jochen; Schiermeyer, Ingo. A lower bound on the independence number of a graph in terms of degrees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 431-437. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a7/