A lower bound on the independence number of a graph in terms of degrees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 431-437 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

For a connected and non-complete graph, a new lower bound on its independence number is proved. It is shown that this bound is realizable by the well known efficient algorithm MIN.
Keywords: independence, stability, algorithm
@article{DMGT_2006_26_3_a7,
     author = {Harant, Jochen and Schiermeyer, Ingo},
     title = {A lower bound on the independence number of a graph in terms of degrees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {431--437},
     year = {2006},
     volume = {26},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a7/}
}
TY  - JOUR
AU  - Harant, Jochen
AU  - Schiermeyer, Ingo
TI  - A lower bound on the independence number of a graph in terms of degrees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 431
EP  - 437
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a7/
LA  - en
ID  - DMGT_2006_26_3_a7
ER  - 
%0 Journal Article
%A Harant, Jochen
%A Schiermeyer, Ingo
%T A lower bound on the independence number of a graph in terms of degrees
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 431-437
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a7/
%G en
%F DMGT_2006_26_3_a7
Harant, Jochen; Schiermeyer, Ingo. A lower bound on the independence number of a graph in terms of degrees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 431-437. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a7/

[1] E. Bertram and P. Horak, Lower bounds on the independence number, Geombinatorics V (1996) 93-98.

[2] Y. Caro, New results on the independence number (Technical Report. Tel-Aviv University, 1979).

[3] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107, doi: 10.1002/jgt.3190150110.

[4] S. Fajtlowicz, On the size of independent sets in graphs, Proc. 9th S-E Conf. on Combinatorics, Graph Theory and Computing, Boca Raton 1978, 269-274.

[5] S. Fajtlowicz, Independence, clique size and maximum degree, Combinatorica 4 (1984) 35-38, doi: 10.1007/BF02579154.

[6] J. Harant, A lower bound on the independence number of a graph, Discrete Math. 188 (1998) 239-243, doi: 10.1016/S0012-365X(98)00048-X.

[7] J. Harant and I. Schiermeyer, On the independence number of a graph in terms of order and size, Discrete Math. 232 (2001) 131-138, doi: 10.1016/S0012-365X(00)00298-3.

[8] O. Murphy, Lower bounds on the stability number of graphs computed in terms of degrees, Discrete Math. 90 (1991) 207-211, doi: 10.1016/0012-365X(91)90357-8.

[9] S.M. Selkow, A Probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363-365, doi: 10.1016/0012-365X(93)00102-B.

[10] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83-87, doi: 10.1016/0012-365X(83)90273-X.

[11] J.B. Shearer, A note on the independence number of triangle-free graphs, II, J. Combin. Theory (B) 53 (1991) 300-307, doi: 10.1016/0095-8956(91)90080-4.

[12] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).