On arbitrarily vertex decomposable unicyclic graphs with dominating cycle
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 403-412
Voir la notice de l'article provenant de la source Library of Science
A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n₁,...,nₖ) of positive integers such that ∑^k_i=1 n_i = n, there exists a partition (V₁,...,Vₖ) of vertex set of G such that for every i ∈ 1,...,k the set V_i induces a connected subgraph of G on n_i vertices. We consider arbitrarily vertex decomposable unicyclic graphs with dominating cycle. We also characterize all such graphs with at most four hanging vertices such that exactly two of them have a common neighbour.
Keywords:
arbitrarily vertex decomposable graph, dominating cycle
@article{DMGT_2006_26_3_a4,
author = {Cichacz, Sylwia and Zio{\l}o, Irmina},
title = {On arbitrarily vertex decomposable unicyclic graphs with dominating cycle},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {403--412},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a4/}
}
TY - JOUR AU - Cichacz, Sylwia AU - Zioło, Irmina TI - On arbitrarily vertex decomposable unicyclic graphs with dominating cycle JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 403 EP - 412 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a4/ LA - en ID - DMGT_2006_26_3_a4 ER -
Cichacz, Sylwia; Zioło, Irmina. On arbitrarily vertex decomposable unicyclic graphs with dominating cycle. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a4/