On arbitrarily vertex decomposable unicyclic graphs with dominating cycle
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 403-412

Voir la notice de l'article provenant de la source Library of Science

A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n₁,...,nₖ) of positive integers such that ∑^k_i=1 n_i = n, there exists a partition (V₁,...,Vₖ) of vertex set of G such that for every i ∈ 1,...,k the set V_i induces a connected subgraph of G on n_i vertices. We consider arbitrarily vertex decomposable unicyclic graphs with dominating cycle. We also characterize all such graphs with at most four hanging vertices such that exactly two of them have a common neighbour.
Keywords: arbitrarily vertex decomposable graph, dominating cycle
@article{DMGT_2006_26_3_a4,
     author = {Cichacz, Sylwia and Zio{\l}o, Irmina},
     title = {On arbitrarily vertex decomposable unicyclic graphs with dominating cycle},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {403--412},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a4/}
}
TY  - JOUR
AU  - Cichacz, Sylwia
AU  - Zioło, Irmina
TI  - On arbitrarily vertex decomposable unicyclic graphs with dominating cycle
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 403
EP  - 412
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a4/
LA  - en
ID  - DMGT_2006_26_3_a4
ER  - 
%0 Journal Article
%A Cichacz, Sylwia
%A Zioło, Irmina
%T On arbitrarily vertex decomposable unicyclic graphs with dominating cycle
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 403-412
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a4/
%G en
%F DMGT_2006_26_3_a4
Cichacz, Sylwia; Zioło, Irmina. On arbitrarily vertex decomposable unicyclic graphs with dominating cycle. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a4/