On-line -coloring of graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 389-401
Cet article a éte moissonné depuis la source Library of Science
For a given induced hereditary property , a -coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property . We consider the effectiveness of on-line -coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound for the performance guarantee function of any stingy on-line -coloring algorithm. In the class of generalized trees, we characterize graphs critical for the greedy -coloring. A class of graphs for which a greedy algorithm always generates optimal -colorings for the property = K₃-free is given.
Keywords:
on-line algorithm, graph coloring, hereditary property
@article{DMGT_2006_26_3_a3,
author = {Borowiecki, Piotr},
title = {On-line -coloring of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {389--401},
year = {2006},
volume = {26},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a3/}
}
Borowiecki, Piotr. On-line -coloring of graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 389-401. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a3/
[1] D.R. Bean, Effective coloration, J. Symbolic Logic 41 (1976) 469-480, doi: 10.2307/2272247.
[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[3] P. Borowiecki, On-line coloring of graphs, in: M. Kubale ed., Graph Colorings, Contemporary Mathematics 352 (American Mathematical Society, 2004) 21-33.
[4] A. Gyárfás and J. Lehel, First-Fit and on-line chromatic number of families of graphs, Ars Combinatoria 29C (1990) 168-176.
[5] H.A. Kierstead, Coloring Graphs On-line, in: A. Fiat and G.J. Woeginger eds., Online Algorithms - The State of the Art, LNCS 1442 (Springer, Berlin, 1998) 281-305.