@article{DMGT_2006_26_3_a10,
author = {Plummer, Michael},
title = {Some recent results on domination in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {457--474},
year = {2006},
volume = {26},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a10/}
}
Plummer, Michael. Some recent results on domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 457-474. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a10/
[1] N. Ananchuen and M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs, Discrete Math. 272 (2003) 5-15, doi: 10.1016/S0012-365X(03)00179-1.
[2] N. Ananchuen and M.D. Plummer, Some results related to the toughness of 3-domination critical graphs, II, Utilitas Math. (2006), (to appear).
[3] N. Ananchuen and M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13, doi: 10.1016/S0012-365X(03)00243-7.
[4] N. Ananchuen and M.D. Plummer, 3-factor-criticality in domination critical graphs, (2005), (submitted).
[5] N. Ananchuen and M.D. Plummer, Matchings in 3-vertex-critical graphs: the even case, Networks 45 (2005) 210-213, doi: 10.1002/net.20065.
[6] N. Ananchuen and M.D. Plummer, Matchings in 3-vertex-critical graphs: the odd case, 2005, (submitted).
[7] N. Ananchuen and M.D. Plummer, On the connectivity and matchings in 3-vertex-critical claw-free graphs, Utilitas Math. (2006), (to appear).
[8] R.C. Brigham, P.Z. Chinn and R.D. Dutton, A study of vertex domination critical graphs (Dept. of Math. Tech. Report M-2, Univ. of Central Florida, 1984).
[9] R.C. Brigham, P.Z. Chinn and R.D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173-179, doi: 10.1002/net.3230180304.
[10] Y. Chen, F. Tian and B. Wei, The 3-domination-critical graphs with toughness one, Utilitas Math. 61 (2002) 239-253.
[11] M. Cropper, D. Greenwell, A.J.W. Hilton and A. Kostochka, The domination number of cubic Hamiltonian graphs, (2005), (submitted).
[12] M.H. de Carvalho, C.L. Lucchesi and U.S.R. Murty, On a conjecture of Lovász concerning bricks. I. The characteristic of a matching covered graph, J. Combin. Theory (B) 85 (2002) 94-136, doi: 10.1006/jctb.2001.2091.
[13] M.H. de Carvalho, C.L. Lucchesi and U.S.R. Murty, On a conjecture of Lovász concerning bricks. II. Bricks of finite characteristic, J. Combin. Theory (B) 85 (2002) 137-180, doi: 10.1006/jctb.2001.2092.
[14] J. Edmonds, L. Lovász and W.R. Pulleyblank, Brick decompositions and the matching rank of graphs, Combinatorica 2 (1982) 247-274, doi: 10.1007/BF02579233.
[15] O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory 16 (1996) 41-51, doi: 10.7151/dmgt.1022.
[16] O. Favaron, E. Flandrin and Z. Ryjácek, Factor-criticality and matching extension in DCT-graphs, Discuss. Math. Graph Theory 17 (1997) 271-278, doi: 10.7151/dmgt.1054.
[17] J. Fiedler, J. Huneke, R. Richter and N. Robertson, Computing the orientable genus of projective graphs, J. Graph Theory 20 (1995) 297-308, doi: 10.1002/jgt.3190200305.
[18] E. Flandrin, F. Tian, B. Wei and L. Zhang, Some properties of 3-domination-critical graphs, Discrete Math. 205 (1999) 65-76, doi: 10.1016/S0012-365X(99)00038-2.
[19] J. Fulman, Domination in vertex and edge critical graphs (Manuscript, Harvard Univ., 1992).
[20] J. Fulman, D. Hanson and G. MacGillivray, Vertex domination-critical graphs, Networks 25 (1995) 41-43, doi: 10.1002/net.3230250203.
[21] M. Garey and D. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman and Co. (San Francisco, 1979) 190.
[22] K. Kawarabayashi, A. Saito and M.D. Plummer, Domination in a graph with a 2-factor, J. Graph Theory (2006), (to appear), (Early view online at www.interscience.wiley.com, DOI 10.10021 jgt. 20142).
[23] A.V. Kostochka and B.Y. Stodolsky, On domination in connected cubic graphs, Communication: Discrete Math. 304 (2005) 45-50, doi: 10.1016/j.disc.2005.07.005.
[24] A.V. Kostochka and B.Y. Stodolsky, personal communication, November, 2005.
[25] A.V. Kostochka and B.Y. Stodolsky, An upper bound on the domination number of n-vertex connected cubic graphs, December, 2005, (submitted).
[26] M. Las Vergnas, A note on matchings in graphs, Colloque sur la Théorie des Graphes (Paris, 1974) Cahiers Centre Études Rech. Opér. 17 (1975) 257-260.
[27] G. Liu and Q. Yu, On n-edge-deletable and n-critical graphs, Bull. Inst. Combin. Appl. 24 (1998) 65-72.
[28] L. Lovász, Matching structure and the matching lattice, J. Combin. Theory (B) 43 (1987) 187-222, doi: 10.1016/0095-8956(87)90021-9.
[29] L. Lovász and M.D. Plummer, Matching Theory, Ann. Discrete Math. 29 (North-Holland, Amsterdam, 1986).
[30] L. Matheson and R. Tarjan, Dominating sets in planar graphs, European J. Combin. 17 (1996) 565-568, doi: 10.1006/eujc.1996.0048.
[31] S. Norine and R. Thomas, Generating bricks, preprint, 2005.
[32] S. Norine and R. Thomas, Minimal bricks, J. Combin. Theory (B) (2005), (to appear).
[33] M.D. Plummer and X. Zha, On certain spanning subgraphs of embeddings with applications to domination, 2005, (submitted).
[34] B. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277-295, doi: 10.1017/S0963548300002042.
[35] D.P. Sumner, 1-factors and anti-factor sets, J. London Math. Soc. 13 (1976) 351-359, doi: 10.1112/jlms/s2-13.2.351.
[36] D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory (B) 34 (1983) 65-76, doi: 10.1016/0095-8956(83)90007-2.