Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_3_a0, author = {Alaeiyan, Mehdi}, title = {Arc-transitive and s-regular {Cayley} graphs of valency five on {Abelian} groups}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {359--368}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/} }
TY - JOUR AU - Alaeiyan, Mehdi TI - Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 359 EP - 368 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/ LA - en ID - DMGT_2006_26_3_a0 ER -
Alaeiyan, Mehdi. Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 359-368. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/
[1] B. Alspach, M. Conder, D. Marusic and Ming-Yao Xu, A classification of 2-arc-transitive circulant, J. Algebraic Combin. 5 (1996) 83-86, doi: 10.1023/A:1022456615990.
[2] N. Biggs, Algebraic Graph Theory (Cambridge University Press, 1974).
[3] Y.G. Baik, Y.Q. Feng and H.S. Sim, The normality of Cayley graphs of finite Abelian groups with valency 5, System Science and Mathematical Science 13 (2000) 420-431.
[4] J.L. Berggren, An algebraic characterization of symmetric graph with p point, Bull. Aus. Math. Soc. 158 (1971) 247-256.
[5] C.Y. Chao, On the classification of symmetric graph with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247-256, doi: 10.1090/S0002-9947-1971-0279000-7.
[6] C.Y. Chao and J. G. Wells, A class of vertex-transitive digraphs, J. Combin. Theory (B) 14 (1973) 246-255, doi: 10.1016/0095-8956(73)90007-5.
[7] J.D. Dixon and B. Mortimer, Permutation Groups (Springer-Verlag, 1996).
[8] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256, doi: 10.1007/BF02579330.
[9] C.D. Godsil and G. Royle, Algebric Graph Theory (Springer-Verlag, 2001).
[10] H. Wielandt, Finite Permutation Group (Academic Press, New York, 1964).
[11] Ming-Yao Xu and Jing Xu, Arc-transitive Cayley graph of valency at most four on Abelian Groups, Southest Asian Bull. Math. 25 (2001) 355-363, doi: 10.1007/s10012-001-0355-z.
[12] Ming-Yao Xu, A note on one-regular graphs of valency four, Chinese Science Bull. 45 (2000) 2160-2162.
[13] Ming-Yao Xu, Hyo-Seob Sim and Youg-Gheel Baik, Arc-transitive circulant digraphs of odd prime-power order, (summitted).
[14] Ming-Yao Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-319, doi: 10.1016/S0012-365X(97)00152-0.