Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 359-368.

Voir la notice de l'article provenant de la source Library of Science

Let G be a finite group, and let 1_G ∉ S ⊆ G. A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x,y ∈ G, the pair (x,y) is an arc if and only if yx^-1 ∈ S. Further, if S = S^-1:= s^-1|s ∈ S, then Γ is undirected. Γ is conected if and only if G = 〈s〉. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a normal subgroup of the automorphism group of Γ. A graph Γ is said to be arc-transitive, if Aut(Γ) is transitive on an arc set. Also, a graph Γ is s-regular if Aut(Γ) acts regularly on the set of s-arcs. In this paper, we first give a complete classification for arc-transitive Cayley graphs of valency five on finite Abelian groups. Moreover, we classify s-regular Cayley graph with valency five on an abelian group for each s ≥ 1.
Keywords: Cayley graph, normal Cayley graph, arc-transitive, s-regular Cayley graph
@article{DMGT_2006_26_3_a0,
     author = {Alaeiyan, Mehdi},
     title = {Arc-transitive and s-regular {Cayley} graphs of valency five on {Abelian} groups},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {359--368},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/}
}
TY  - JOUR
AU  - Alaeiyan, Mehdi
TI  - Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 359
EP  - 368
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/
LA  - en
ID  - DMGT_2006_26_3_a0
ER  - 
%0 Journal Article
%A Alaeiyan, Mehdi
%T Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 359-368
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/
%G en
%F DMGT_2006_26_3_a0
Alaeiyan, Mehdi. Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 359-368. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/

[1] B. Alspach, M. Conder, D. Marusic and Ming-Yao Xu, A classification of 2-arc-transitive circulant, J. Algebraic Combin. 5 (1996) 83-86, doi: 10.1023/A:1022456615990.

[2] N. Biggs, Algebraic Graph Theory (Cambridge University Press, 1974).

[3] Y.G. Baik, Y.Q. Feng and H.S. Sim, The normality of Cayley graphs of finite Abelian groups with valency 5, System Science and Mathematical Science 13 (2000) 420-431.

[4] J.L. Berggren, An algebraic characterization of symmetric graph with p point, Bull. Aus. Math. Soc. 158 (1971) 247-256.

[5] C.Y. Chao, On the classification of symmetric graph with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247-256, doi: 10.1090/S0002-9947-1971-0279000-7.

[6] C.Y. Chao and J. G. Wells, A class of vertex-transitive digraphs, J. Combin. Theory (B) 14 (1973) 246-255, doi: 10.1016/0095-8956(73)90007-5.

[7] J.D. Dixon and B. Mortimer, Permutation Groups (Springer-Verlag, 1996).

[8] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256, doi: 10.1007/BF02579330.

[9] C.D. Godsil and G. Royle, Algebric Graph Theory (Springer-Verlag, 2001).

[10] H. Wielandt, Finite Permutation Group (Academic Press, New York, 1964).

[11] Ming-Yao Xu and Jing Xu, Arc-transitive Cayley graph of valency at most four on Abelian Groups, Southest Asian Bull. Math. 25 (2001) 355-363, doi: 10.1007/s10012-001-0355-z.

[12] Ming-Yao Xu, A note on one-regular graphs of valency four, Chinese Science Bull. 45 (2000) 2160-2162.

[13] Ming-Yao Xu, Hyo-Seob Sim and Youg-Gheel Baik, Arc-transitive circulant digraphs of odd prime-power order, (summitted).

[14] Ming-Yao Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-319, doi: 10.1016/S0012-365X(97)00152-0.