Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 359-368
Voir la notice de l'article provenant de la source Library of Science
Let G be a finite group, and let 1_G ∉ S ⊆ G. A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x,y ∈ G, the pair (x,y) is an arc if and only if yx^-1 ∈ S. Further, if S = S^-1:= s^-1|s ∈ S, then Γ is undirected. Γ is conected if and only if G = 〈s〉. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a normal subgroup of the automorphism group of Γ. A graph Γ is said to be arc-transitive, if Aut(Γ) is transitive on an arc set. Also, a graph Γ is s-regular if Aut(Γ) acts regularly on the set of s-arcs. In this paper, we first give a complete classification for arc-transitive Cayley graphs of valency five on finite Abelian groups. Moreover, we classify s-regular Cayley graph with valency five on an abelian group for each s ≥ 1.
Keywords:
Cayley graph, normal Cayley graph, arc-transitive, s-regular Cayley graph
@article{DMGT_2006_26_3_a0,
author = {Alaeiyan, Mehdi},
title = {Arc-transitive and s-regular {Cayley} graphs of valency five on {Abelian} groups},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {359--368},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/}
}
TY - JOUR AU - Alaeiyan, Mehdi TI - Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 359 EP - 368 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/ LA - en ID - DMGT_2006_26_3_a0 ER -
Alaeiyan, Mehdi. Arc-transitive and s-regular Cayley graphs of valency five on Abelian groups. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 3, pp. 359-368. http://geodesic.mathdoc.fr/item/DMGT_2006_26_3_a0/