On a perfect problem
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 273-277.

Voir la notice de l'article provenant de la source Library of Science

We solve Open Problem (xvi) from Perfect Problems of Chvátal [1] available at ftp://dimacs.rutgers.edu/pub/perfect/problems.tex: Is there a class C of perfect graphs such that
Keywords: hereditary classes, perfect graphs
@article{DMGT_2006_26_2_a7,
     author = {Zverovich, Igor},
     title = {On a perfect problem},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {273--277},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a7/}
}
TY  - JOUR
AU  - Zverovich, Igor
TI  - On a perfect problem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 273
EP  - 277
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a7/
LA  - en
ID  - DMGT_2006_26_2_a7
ER  - 
%0 Journal Article
%A Zverovich, Igor
%T On a perfect problem
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 273-277
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a7/
%G en
%F DMGT_2006_26_2_a7
Zverovich, Igor. On a perfect problem. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 273-277. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a7/

[1] V. Chvátal, Perfect Problems, available at http://www.cs.concordia.ca/∼chvatal/perfect/problems.html.

[2] G.A. Dirac, On rigid circuit graphs, Abh. Math. Semin. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776.

[3] Perfect graphs, Edited by J.L. Ramírez Alfonsín and B.A. Reed, Wiley-Interscience Series in Discrete Mathematics and Optimization (John Wiley Sons, Ltd., Chichester, 2001) xxii+362 pp.

[4] A.A. Zykov, Fundamentals of Graph Theory (Nauka, Moscow, 1987) 382 pp. (in Russian), translated and edited by L. Boron, C. Christenson and B. Smith (BCS Associates, Moscow, ID, 1990) vi+365 pp.