On a perfect problem
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 273-277
Cet article a éte moissonné depuis la source Library of Science
We solve Open Problem (xvi) from Perfect Problems of Chvátal [1] available at ftp://dimacs.rutgers.edu/pub/perfect/problems.tex: Is there a class C of perfect graphs such that
Keywords:
hereditary classes, perfect graphs
@article{DMGT_2006_26_2_a7,
author = {Zverovich, Igor},
title = {On a perfect problem},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {273--277},
year = {2006},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a7/}
}
Zverovich, Igor. On a perfect problem. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 273-277. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a7/
[1] V. Chvátal, Perfect Problems, available at http://www.cs.concordia.ca/∼chvatal/perfect/problems.html.
[2] G.A. Dirac, On rigid circuit graphs, Abh. Math. Semin. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776.
[3] Perfect graphs, Edited by J.L. Ramírez Alfonsín and B.A. Reed, Wiley-Interscience Series in Discrete Mathematics and Optimization (John Wiley Sons, Ltd., Chichester, 2001) xxii+362 pp.
[4] A.A. Zykov, Fundamentals of Graph Theory (Nauka, Moscow, 1987) 382 pp. (in Russian), translated and edited by L. Boron, C. Christenson and B. Smith (BCS Associates, Moscow, ID, 1990) vi+365 pp.