Isomorphic components of direct products of bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 231-248
Cet article a éte moissonné depuis la source Library of Science
A standard result states the direct product of two connected bipartite graphs has exactly two components. Jha, Klavžar and Zmazek proved that if one of the factors admits an automorphism that interchanges partite sets, then the components are isomorphic. They conjectured the converse to be true. We prove the converse holds if the factors are square-free. Further, we present a matrix-theoretic conjecture that, if proved, would prove the general case of the converse; if refuted, it would produce a counterexample.
Keywords:
direct product, tensor product, Kronecker product, bipartite graph
@article{DMGT_2006_26_2_a5,
author = {Hammack, Richard},
title = {Isomorphic components of direct products of bipartite graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {231--248},
year = {2006},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a5/}
}
Hammack, Richard. Isomorphic components of direct products of bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 231-248. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a5/
[1] T. Chow, The Q-spectrum and spanning trees of tensor products of bipartite graphs, Proc. Amer. Math. Soc. 125 (1997) 3155-3161, doi: 10.1090/S0002-9939-97-04049-5.
[2] W. Imrich and S. Klavžar, Product Graphs; Structure and Recognition (Wiley Interscience Series in Discrete Mathematics and Optimization, New York, 2000).
[3] P. Jha, S. Klavžar and B. Zmazek, Isomorphic components of Kronecker product of bipartite graphs, Discuss. Math. Graph Theory 17 (1997) 302-308, doi: 10.7151/dmgt.1057.
[4] P. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52, doi: 10.1090/S0002-9939-1962-0133816-6.