A lower bound for the irredundance number of trees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 209-215.

Voir la notice de l'article provenant de la source Library of Science

Let ir(G) and γ(G) be the irredundance number and domination number of a graph G, respectively. The number of vertices and leaves of a graph G are denoted by n(G) and n₁(G). If T is a tree, then Lemańska [4] presented in 2004 the sharp lower bound
Keywords: irredundance, tree, domination
@article{DMGT_2006_26_2_a2,
     author = {Poschen, Michael and Volkmann, Lutz},
     title = {A lower bound for the irredundance number of trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {209--215},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a2/}
}
TY  - JOUR
AU  - Poschen, Michael
AU  - Volkmann, Lutz
TI  - A lower bound for the irredundance number of trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 209
EP  - 215
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a2/
LA  - en
ID  - DMGT_2006_26_2_a2
ER  - 
%0 Journal Article
%A Poschen, Michael
%A Volkmann, Lutz
%T A lower bound for the irredundance number of trees
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 209-215
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a2/
%G en
%F DMGT_2006_26_2_a2
Poschen, Michael; Volkmann, Lutz. A lower bound for the irredundance number of trees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a2/

[1] E.J. Cockayne, Irredundance, secure domination, and maximum degree in trees, unpublished manuscript (2004).

[2] E.J. Cockayne, P.H.P. Grobler, S.T. Hedetniemi and A.A. McRae, What makes an irredundant set maximal? J. Combin. Math. Combin. Comput. 25 (1997) 213-224.

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[4] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24 (2004) 165-169, doi: 10.7151/dmgt.1222.