A lower bound for the irredundance number of trees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 209-215
Cet article a éte moissonné depuis la source Library of Science
Let ir(G) and γ(G) be the irredundance number and domination number of a graph G, respectively. The number of vertices and leaves of a graph G are denoted by n(G) and n₁(G). If T is a tree, then Lemańska [4] presented in 2004 the sharp lower bound
Keywords:
irredundance, tree, domination
@article{DMGT_2006_26_2_a2,
author = {Poschen, Michael and Volkmann, Lutz},
title = {A lower bound for the irredundance number of trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {209--215},
year = {2006},
volume = {26},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a2/}
}
Poschen, Michael; Volkmann, Lutz. A lower bound for the irredundance number of trees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a2/
[1] E.J. Cockayne, Irredundance, secure domination, and maximum degree in trees, unpublished manuscript (2004).
[2] E.J. Cockayne, P.H.P. Grobler, S.T. Hedetniemi and A.A. McRae, What makes an irredundant set maximal? J. Combin. Math. Combin. Comput. 25 (1997) 213-224.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[4] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24 (2004) 165-169, doi: 10.7151/dmgt.1222.