Chvátal-Erdos condition and pancyclism
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 335-342
Voir la notice de l'article provenant de la source Library of Science
The well-known Chvátal-Erdős theorem states that if the stability number α of a graph G is not greater than its connectivity then G is hamiltonian. In 1974 Erdős showed that if, additionally, the order of the graph is sufficiently large with respect to α, then G is pancyclic. His proof is based on the properties of cycle-complete graph Ramsey numbers. In this paper we show that a similar result can be easily proved by applying only classical Ramsey numbers.
Keywords:
hamiltonian graphs, pancyclic graphs, cycles, connectivity, stability number
@article{DMGT_2006_26_2_a13,
author = {Flandrin, Evelyne and Li, Hao and Marczyk, Antoni and Schiermeyer, Ingo and Wo\'zniak, Mariusz},
title = {Chv\'atal-Erdos condition and pancyclism},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {335--342},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a13/}
}
TY - JOUR AU - Flandrin, Evelyne AU - Li, Hao AU - Marczyk, Antoni AU - Schiermeyer, Ingo AU - Woźniak, Mariusz TI - Chvátal-Erdos condition and pancyclism JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 335 EP - 342 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a13/ LA - en ID - DMGT_2006_26_2_a13 ER -
%0 Journal Article %A Flandrin, Evelyne %A Li, Hao %A Marczyk, Antoni %A Schiermeyer, Ingo %A Woźniak, Mariusz %T Chvátal-Erdos condition and pancyclism %J Discussiones Mathematicae. Graph Theory %D 2006 %P 335-342 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a13/ %G en %F DMGT_2006_26_2_a13
Flandrin, Evelyne; Li, Hao; Marczyk, Antoni; Schiermeyer, Ingo; Woźniak, Mariusz. Chvátal-Erdos condition and pancyclism. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 335-342. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a13/