Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_2_a13, author = {Flandrin, Evelyne and Li, Hao and Marczyk, Antoni and Schiermeyer, Ingo and Wo\'zniak, Mariusz}, title = {Chv\'atal-Erdos condition and pancyclism}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {335--342}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a13/} }
TY - JOUR AU - Flandrin, Evelyne AU - Li, Hao AU - Marczyk, Antoni AU - Schiermeyer, Ingo AU - Woźniak, Mariusz TI - Chvátal-Erdos condition and pancyclism JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 335 EP - 342 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a13/ LA - en ID - DMGT_2006_26_2_a13 ER -
%0 Journal Article %A Flandrin, Evelyne %A Li, Hao %A Marczyk, Antoni %A Schiermeyer, Ingo %A Woźniak, Mariusz %T Chvátal-Erdos condition and pancyclism %J Discussiones Mathematicae. Graph Theory %D 2006 %P 335-342 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a13/ %G en %F DMGT_2006_26_2_a13
Flandrin, Evelyne; Li, Hao; Marczyk, Antoni; Schiermeyer, Ingo; Woźniak, Mariusz. Chvátal-Erdos condition and pancyclism. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 2, pp. 335-342. http://geodesic.mathdoc.fr/item/DMGT_2006_26_2_a13/
[1] D. Amar, I. Fournier and A. Germa, Pancyclism in Chvátal-Erdős graphs, Graphs Combin. 7 (1991) 101-112, doi: 10.1007/BF01788136.
[2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
[3] J.A. Bondy, Pancyclic graphs, in: Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (1971) 167-172.
[4] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory (B) 14 (1973) 46-54, doi: 10.1016/S0095-8956(73)80005-X.
[5] J.A. Bondy and U.S.R. Murty, Graphs Theory with Applications (Macmillan. London, 1976).
[6] S. Brandt, private communication.
[7] S. Brandt, R. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141-176, doi: 10.1002/(SICI)1097-0118(199803)27:3141::AID-JGT3>3.0.CO;2-O
[8] V. Chvátal, P. Erdős, A note on Hamilton circuits, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9.
[9] N. Chakroun and D. Sotteau, Chvátal-Erdős theorem for digraphs, in: Cycles and Rays (Montreal, 1987) (Kluwer, Dordrecht, 1990) 75-86.
[10] P. Erdős, On the construction of certain graphs, J. Combin. Theory 1 (1966) 149-152, doi: 10.1016/S0021-9800(66)80011-X.
[11] P. Erdős, Some problems in Graph Theory, in: Lecture Notes Math. 411 (1974) 187-190.
[12] B. Jackson and O. Ordaz, Chvátal-Erdős condition for path and cycles in graphs and digraphs. A survey, Discrete Math. 84 (1990) 241-254, doi: 10.1016/0012-365X(90)90130-A.
[13] D. Lou, The Chvátal-Erdős condition for cycles in triangle-free graphs, Discrete Math. 152 (1996) 253-257, doi: 10.1016/0012-365X(96)80461-4.
[14] A. Marczyk and J-F. Saclé, On the Jackson-Ordaz conjecture for graphs with the stability number four (Rapport de Recherche 1287, Université de Paris-Sud, Centre d'Orsay, 2001).
[15] F.P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. 30 (1930) 264-286, doi: 10.1112/plms/s2-30.1.264.
[16] S. Zhang, Pancyclism and bipancyclism of hamiltonian graphs, J. Combin. Theory (B) 60 (1994) 159-168, doi: 10.1006/jctb.1994.1010.