Some results on total domination in direct products of graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 103-112.

Voir la notice de l'article provenant de la source Library of Science

Upper and lower bounds on the total domination number of the direct product of graphs are given. The bounds involve the 2-total domination number, the total 2-tuple domination number, and the open packing number of the factors. Using these relationships one exact total domination number is obtained. An infinite family of graphs is constructed showing that the bounds are best possible. The domination number of direct products of graphs is also bounded from below.
Keywords: direct product, total domination, k-tuple domination, open packing, domination
@article{DMGT_2006_26_1_a9,
     author = {Dorbec, Paul and Gravier, Sylvain and Klav\v{z}ar, Sandi and Spacapan, Simon},
     title = {Some results on total domination in direct products of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a9/}
}
TY  - JOUR
AU  - Dorbec, Paul
AU  - Gravier, Sylvain
AU  - Klavžar, Sandi
AU  - Spacapan, Simon
TI  - Some results on total domination in direct products of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 103
EP  - 112
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a9/
LA  - en
ID  - DMGT_2006_26_1_a9
ER  - 
%0 Journal Article
%A Dorbec, Paul
%A Gravier, Sylvain
%A Klavžar, Sandi
%A Spacapan, Simon
%T Some results on total domination in direct products of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 103-112
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a9/
%G en
%F DMGT_2006_26_1_a9
Dorbec, Paul; Gravier, Sylvain; Klavžar, Sandi; Spacapan, Simon. Some results on total domination in direct products of graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 103-112. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a9/

[1] B. Bresar, S. Klavžar and D.F. Rall, Dominating direct products of graphs, submitted, 2004.

[2] M. El-Zahar, S. Gravier and A. Klobucar, On the total domination of cross products of graphs, Les Cahiers du laboratoire Leibniz, No. 97, January 2004.

[3] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).

[5] W. Imrich, Factoring cardinal product graphs in polynomial time, Discrete Math. 192 (1998) 119-144, doi: 10.1016/S0012-365X(98)00069-7.

[6] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (J. Wiley Sons, New York, 2000).

[7] P.K. Jha, S. Klavžar and B. Zmazek, Isomorphic components of Kronecker product of bipartite graphs, Discuss. Math. Graph Theory 17 (1997) 301-309, doi: 10.7151/dmgt.1057.

[8] R. Klasing and C. Laforest, Hardness results and approximation algorithms of k-tuple domination in graphs, Inform. Process. Lett. 89 (2004) 75-83, doi: 10.1016/j.ipl.2003.10.004.

[9] C.S. Liao and G.J. Chang, Algorithmic aspect of k-tuple domination in graphs, Taiwanese J. Math. 6 (2002) 415-420.

[10] R. Nowakowski and D. F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79, doi: 10.7151/dmgt.1023.

[11] D.F. Rall, Total domination in categorical products of graphs, Discuss. Math. Graph Theory 25 (2005) 35-44, doi: 10.7151/dmgt.1257.

[12] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52, doi: 10.1090/S0002-9939-1962-0133816-6.