Spectral integral variation of trees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 49-58

Voir la notice de l'article provenant de la source Library of Science

In this paper, we determine all trees with the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing respectively by 1 and the other Laplacian eigenvalues remaining fixed. We also investigate a situation in which the algebraic connectivity is one of the changed eigenvalues.
Keywords: tree, Laplacian eigenvalues, spectral integral variation, algebraic connectivity
@article{DMGT_2006_26_1_a4,
     author = {Wang, Yi and Fan, Yi-Zheng},
     title = {Spectral integral variation of trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/}
}
TY  - JOUR
AU  - Wang, Yi
AU  - Fan, Yi-Zheng
TI  - Spectral integral variation of trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 49
EP  - 58
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/
LA  - en
ID  - DMGT_2006_26_1_a4
ER  - 
%0 Journal Article
%A Wang, Yi
%A Fan, Yi-Zheng
%T Spectral integral variation of trees
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 49-58
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/
%G en
%F DMGT_2006_26_1_a4
Wang, Yi; Fan, Yi-Zheng. Spectral integral variation of trees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/