Spectral integral variation of trees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 49-58.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we determine all trees with the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing respectively by 1 and the other Laplacian eigenvalues remaining fixed. We also investigate a situation in which the algebraic connectivity is one of the changed eigenvalues.
Keywords: tree, Laplacian eigenvalues, spectral integral variation, algebraic connectivity
@article{DMGT_2006_26_1_a4,
     author = {Wang, Yi and Fan, Yi-Zheng},
     title = {Spectral integral variation of trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/}
}
TY  - JOUR
AU  - Wang, Yi
AU  - Fan, Yi-Zheng
TI  - Spectral integral variation of trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 49
EP  - 58
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/
LA  - en
ID  - DMGT_2006_26_1_a4
ER  - 
%0 Journal Article
%A Wang, Yi
%A Fan, Yi-Zheng
%T Spectral integral variation of trees
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 49-58
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/
%G en
%F DMGT_2006_26_1_a4
Wang, Yi; Fan, Yi-Zheng. Spectral integral variation of trees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/

[1] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications (2nd Edn., VEB Deutscher Verlag d. Wiss., Berlin, 1982).

[2] Yi-Zheng Fan, On spectral integral variations of graph, Linear and Multilinear Algebra 50 (2002) 133-142, doi: 10.1080/03081080290019513.

[3] Yi-Zheng Fan, Spectral integral variations of degree maximal graphs, Linear and Multilinear Algebra 52 (2003) 147-154.

[4] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298-305.

[5] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633.

[6] R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016.

[7] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math. 7 (1994) 229-237, doi: 10.1137/S0895480191222653.

[8] F. Harary and A.J. Schwenk, Which graphs have integral spectra? in: Graphs and Combinatorics, R.A. Bari and F. Harray eds. (Springer-Verlag, 1974), 45-51, doi: 10.1007/BFb0066434.

[9] S. Kirkland, A characterization of spectrum integral variation in two places for Laplacian matrices, Linear and Multilinear Algebra 52 (2004) 79-98, doi: 10.1080/0308108031000122506.

[10] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1994) 143-176, doi: 10.1016/0024-3795(94)90486-3.

[11] R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl. 199 (1994) 381-389, doi: 10.1016/0024-3795(94)90361-1.

[12] B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi et al. (eds.), Graph Theory, Combinatorics, and Applications (Wiley, New York, 1991) 871-898.

[13] W. So, Rank one perturbation and its application to the Laplacian spectrum of graphs, Linear and Multilinear Algebra 46 (1999) 193-198, doi: 10.1080/03081089908818613.