Spectral integral variation of trees
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 49-58
Voir la notice de l'article provenant de la source Library of Science
In this paper, we determine all trees with the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing respectively by 1 and the other Laplacian eigenvalues remaining fixed. We also investigate a situation in which the algebraic connectivity is one of the changed eigenvalues.
Keywords:
tree, Laplacian eigenvalues, spectral integral variation, algebraic connectivity
@article{DMGT_2006_26_1_a4,
author = {Wang, Yi and Fan, Yi-Zheng},
title = {Spectral integral variation of trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {49--58},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/}
}
Wang, Yi; Fan, Yi-Zheng. Spectral integral variation of trees. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a4/