A characterization of planar median graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 41-48.

Voir la notice de l'article provenant de la source Library of Science

Median graphs have many interesting properties. One of them is-in connection with triangle free graphs-the recognition complexity. In general the complexity is not very fast, but if we restrict to the planar case the recognition complexity becomes linear. Despite this fact, there is no characterization of planar median graphs in the literature. Here an additional condition is introduced for the convex expansion procedure that characterizes planar median graphs.
Keywords: median graphs, planar graphs, expansion
@article{DMGT_2006_26_1_a3,
     author = {Peterin, Iztok},
     title = {A characterization of planar median graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a3/}
}
TY  - JOUR
AU  - Peterin, Iztok
TI  - A characterization of planar median graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 41
EP  - 48
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a3/
LA  - en
ID  - DMGT_2006_26_1_a3
ER  - 
%0 Journal Article
%A Peterin, Iztok
%T A characterization of planar median graphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 41-48
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a3/
%G en
%F DMGT_2006_26_1_a3
Peterin, Iztok. A characterization of planar median graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a3/

[1] M. Behzad and E.S. Mahmoodian, On topological invariants of the product of graphs, Canad. Math. Bull. 12 (1969) 157-166, doi: 10.4153/CMB-1969-015-9.

[2] B. Bresar, W. Imrich, S. Klavžar, H.M. Mulder and R. Skrekovski, Tiled partial cubes, J. Graph Theory 40 (2002) 91-103, doi: 10.1002/jgt.10031.

[3] V.D. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity, (Russian) Kibernetika (Kiev) (1988) 6-9; translation in Cybernetics 24 (1988) 6-11.

[4] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory (B) 14 (1973) 263-267, doi: 10.1016/0095-8956(73)90010-5.

[5] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley Sons, New York, 2000).

[6] W. Imrich, S. Klavžar and H.M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494.

[7] S. Klavžar and H.M. Mulder, Median graphs: characterization, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127.

[8] B. Mohar and C. Thomassen, Graphs on Surfaces (Johns Hopkins University Press, Baltimore, MD, 2001).

[9] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204, doi: 10.1016/0012-365X(78)90199-1.

[10] H.M. Mulder, The Interval Function of a Graph (Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980).

[11] H.M. Mulder, The expansion procedure for graphs, Contemporary methods in graph theory 459-477 Bibliographisches Inst. Mannheim, 1990.

[12] P.M. Winkler, Isometric embedding in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225, doi: 10.1016/0166-218X(84)90069-6.