Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_3_a9, author = {Kubesa, Michael}, title = {Trees with \ensuremath{\alpha}-labelings and decompositions of complete graphs into non-symmetric isomorphic spanning trees}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {311--324}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a9/} }
TY - JOUR AU - Kubesa, Michael TI - Trees with α-labelings and decompositions of complete graphs into non-symmetric isomorphic spanning trees JO - Discussiones Mathematicae. Graph Theory PY - 2005 SP - 311 EP - 324 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a9/ LA - en ID - DMGT_2005_25_3_a9 ER -
%0 Journal Article %A Kubesa, Michael %T Trees with α-labelings and decompositions of complete graphs into non-symmetric isomorphic spanning trees %J Discussiones Mathematicae. Graph Theory %D 2005 %P 311-324 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a9/ %G en %F DMGT_2005_25_3_a9
Kubesa, Michael. Trees with α-labelings and decompositions of complete graphs into non-symmetric isomorphic spanning trees. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 311-324. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a9/
[1] P. Eldergill, Decompositions of the complete graph with an even number of vertices (M.Sc. thesis, McMaster University, Hamilton, 1997).
[2] D. Froncek, Cyclic decompositions of complete graphs into spanning trees, Discuss. Math. Graph Theory 24 (2004) 345-352, doi: 10.7151/dmgt.1235.
[3] D. Froncek, Bi-cyclic decompositions of complete graphs into spanning trees, submitted for publication.
[4] D. Froncek and M. Kubesa, Factorizations of complete graphs into spanning trees, Congress. Numer. 154 (2002) 125-134.
[5] A. Rosa, Cyclic decompositions of complete graphs (Ph.D. thesis, Slovak Academy of Science, Bratislava, 1965).
[6] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Intl. Symp. Rome 1966 (Gordon and Breach, Dunod, Paris, 1967) 349-355.
[7] M. Kubesa, Spanning tree factorizations of complete graphs, J. Combin. Math. and Combin. Computing, accepted for publication.