Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_3_a6, author = {Faudree, Ralph and Gould, Ronald and Jacobson, Michael}, title = {Potential forbidden triples implying hamiltonicity: for sufficiently large graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {273--289}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a6/} }
TY - JOUR AU - Faudree, Ralph AU - Gould, Ronald AU - Jacobson, Michael TI - Potential forbidden triples implying hamiltonicity: for sufficiently large graphs JO - Discussiones Mathematicae. Graph Theory PY - 2005 SP - 273 EP - 289 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a6/ LA - en ID - DMGT_2005_25_3_a6 ER -
%0 Journal Article %A Faudree, Ralph %A Gould, Ronald %A Jacobson, Michael %T Potential forbidden triples implying hamiltonicity: for sufficiently large graphs %J Discussiones Mathematicae. Graph Theory %D 2005 %P 273-289 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a6/ %G en %F DMGT_2005_25_3_a6
Faudree, Ralph; Gould, Ronald; Jacobson, Michael. Potential forbidden triples implying hamiltonicity: for sufficiently large graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 273-289. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a6/
[1] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity (Ph.D. Thesis, Memphis State University, 1991).
[2] J. Brousek, Forbidden triples and hamiltonicity, Discrete Math. 251 (2002) 71-76, doi: 10.1016/S0012-365X(01)00326-0.
[3] J. Brousek, Z. Ryjácek and I. Schiermeyer, Forbidden subgraphs, stability and hamiltonicity, 18th British Combinatorial Conference (London, 1997), Discrete Math. 197/198 (1999) 143-155, doi: 10.1016/S0012-365X(98)00229-5.
[4] G. Chartrand and L. Lesniak, Graphs Digraphs (3rd Edition, Chapman Hall, 1996).
[5] R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math. 173 (1997) 45-60, doi: 10.1016/S0012-365X(96)00147-1.
[6] R.J. Faudree, R.J. Gould and M.S. Jacobson, Forbidden triples implying hamiltonicity: for all graphs, Discuss. Math. Graph Theory 24 (2004) 47-54, doi: 10.7151/dmgt.1212.
[7] R.J. Faudree, R.J. Gould and M.S. Jacobson, Forbidden triples including $K_{1,3}$ implying hamiltonicity: for sufficiently large graphs, preprint.
[8] R.J. Faudree, R.J. Gould, M.S. Jacobson and L. Lesniak, Characterizing forbidden clawless triples implying hamiltonian graphs, Discrete Math. 249 (2002) 71-81, doi: 10.1016/S0012-365X(01)00235-7.