On graphs G for which both g and G̅ are claw-free
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 267-272
Cet article a éte moissonné depuis la source Library of Science
Let G be a graph with |V(G)| ≥ 10. We prove that if both G and G̅ are claw-free, then minΔ(G), Δ(G̅) ≤ 2. As a generalization of this result in the case where |V(G)| is sufficiently large, we also prove that if both G and G̅ are K_1,t-free, then minΔ(G),Δ(G̅) ≤ r(t- 1,t)-1 where r(t-1,t) is the Ramsey number.
Keywords:
claw-free, complement, maximum degree
@article{DMGT_2005_25_3_a5,
author = {Fujita, Shinya},
title = {On graphs {G} for which both g and {G̅} are claw-free},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {267--272},
year = {2005},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a5/}
}
Fujita, Shinya. On graphs G for which both g and G̅ are claw-free. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 267-272. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a5/
[1] H.J. Broersma, Z. Ryjacek and I. Schiermeyer, Closure concepts - a survey, Graphs and Combin. 16 (2000) 17-48, doi: 10.1007/s003730050002.