Highly connected counterexamples to a conjecture on α-domination
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 435-440.

Voir la notice de l'article provenant de la source Library of Science

An infinite class of counterexamples is given to a conjecture of Dahme et al. [1] concerning the minimum size of a dominating vertex set that contains at least a prescribed proportion of the neighbors of each vertex not belonging to the set.
Keywords: graph, dominating set, α-domination
@article{DMGT_2005_25_3_a19,
     author = {Tuza, Zsolt},
     title = {Highly connected counterexamples to a conjecture on \ensuremath{\alpha}-domination},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {435--440},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a19/}
}
TY  - JOUR
AU  - Tuza, Zsolt
TI  - Highly connected counterexamples to a conjecture on α-domination
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 435
EP  - 440
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a19/
LA  - en
ID  - DMGT_2005_25_3_a19
ER  - 
%0 Journal Article
%A Tuza, Zsolt
%T Highly connected counterexamples to a conjecture on α-domination
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 435-440
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a19/
%G en
%F DMGT_2005_25_3_a19
Tuza, Zsolt. Highly connected counterexamples to a conjecture on α-domination. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 435-440. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a19/

[1] F. Dahme, D. Rautenbach and L. Volkmann, Some remarks on α-domination, Discuss. Math. Graph Theory 24 (2004) 423-430, doi: 10.7151/dmgt.1241.

[2] J.E. Dunbar, D.G, Hoffman, R.C. Laskar and L.R. Markus, α-domination, Discrete Math. 211 (2000) 11-26, doi: 10.1016/S0012-365X(99)00131-4.

[3] D.R. Woodall, Improper colourings of graphs, Pitman Res. Notes Math. Ser. 218 (1988) 45-63.