Highly connected counterexamples to a conjecture on α-domination
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 435-440
Voir la notice de l'article provenant de la source Library of Science
An infinite class of counterexamples is given to a conjecture of Dahme et al. [1] concerning the minimum size of a dominating vertex set that contains at least a prescribed proportion of the neighbors of each vertex not belonging to the set.
Keywords:
graph, dominating set, α-domination
@article{DMGT_2005_25_3_a19,
author = {Tuza, Zsolt},
title = {Highly connected counterexamples to a conjecture on \ensuremath{\alpha}-domination},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {435--440},
publisher = {mathdoc},
volume = {25},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a19/}
}
Tuza, Zsolt. Highly connected counterexamples to a conjecture on α-domination. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 435-440. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a19/