Highly connected counterexamples to a conjecture on α-domination
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 435-440
Cet article a éte moissonné depuis la source Library of Science
An infinite class of counterexamples is given to a conjecture of Dahme et al. [1] concerning the minimum size of a dominating vertex set that contains at least a prescribed proportion of the neighbors of each vertex not belonging to the set.
Keywords:
graph, dominating set, α-domination
@article{DMGT_2005_25_3_a19,
author = {Tuza, Zsolt},
title = {Highly connected counterexamples to a conjecture on \ensuremath{\alpha}-domination},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {435--440},
year = {2005},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a19/}
}
Tuza, Zsolt. Highly connected counterexamples to a conjecture on α-domination. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 435-440. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a19/
[1] F. Dahme, D. Rautenbach and L. Volkmann, Some remarks on α-domination, Discuss. Math. Graph Theory 24 (2004) 423-430, doi: 10.7151/dmgt.1241.
[2] J.E. Dunbar, D.G, Hoffman, R.C. Laskar and L.R. Markus, α-domination, Discrete Math. 211 (2000) 11-26, doi: 10.1016/S0012-365X(99)00131-4.
[3] D.R. Woodall, Improper colourings of graphs, Pitman Res. Notes Math. Ser. 218 (1988) 45-63.