On short cycles through prescribed vertices of a polyhedral graph
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 419-426.

Voir la notice de l'article provenant de la source Library of Science

Guaranteed upper bounds on the length of a shortest cycle through k ≤ 5 prescribed vertices of a polyhedral graph or plane triangulation are proved.
Keywords: polyhedral graph, triangulation, short cycle, prescribed vertices
@article{DMGT_2005_25_3_a17,
     author = {Hexel, Erhard},
     title = {On short cycles through prescribed vertices of a polyhedral graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {419--426},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a17/}
}
TY  - JOUR
AU  - Hexel, Erhard
TI  - On short cycles through prescribed vertices of a polyhedral graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 419
EP  - 426
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a17/
LA  - en
ID  - DMGT_2005_25_3_a17
ER  - 
%0 Journal Article
%A Hexel, Erhard
%T On short cycles through prescribed vertices of a polyhedral graph
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 419-426
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a17/
%G en
%F DMGT_2005_25_3_a17
Hexel, Erhard. On short cycles through prescribed vertices of a polyhedral graph. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 419-426. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a17/

[1] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155, doi: 10.1007/BF01303200.

[2] G.A. Dirac, 4-crome Graphen und vollständige 4-Graphen, Math. Nachr. 22 (1960) 51-60, doi: 10.1002/mana.19600220106.

[3] F. Göring, J. Harant, E. Hexel and Zs. Tuza, On short cycles through prescribed vertices of a graph, Discrete Math. 286 (2004) 67-74, doi: 10.1016/j.disc.2003.11.047.

[4] J. Harant, On paths and cycles through specified vertices, Discrete Math. 286 (2004) 95-98, doi: 10.1016/j.disc.2003.11.059.

[5] R. Diestel, Graph Theory (Springer, Graduate Texts in Mathematics 173, 2000).

[6] A.K. Kelmans and M.V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Math. 38 (1982) 317-322, doi: 10.1016/0012-365X(82)90299-0.

[7] T. Sakai, Long paths and cycles through specified vertices in k-connected graphs, Ars Combin. 58 (2001) 33-65.