Kernels in monochromatic path digraphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 407-417.

Voir la notice de l'article provenant de la source Library of Science

We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. Let D be an m-coloured digraph. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions:
Keywords: kernel, line digraph, kernel by monochromatic paths, monochromatic path digraph, edge-coloured digraph
@article{DMGT_2005_25_3_a16,
     author = {Galeana-S\'anchez, Hortensia and Ram{\'\i}rez, Laura and Mej{\'\i}a, Hugo},
     title = {Kernels in monochromatic path digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {407--417},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a16/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Ramírez, Laura
AU  - Mejía, Hugo
TI  - Kernels in monochromatic path digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 407
EP  - 417
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a16/
LA  - en
ID  - DMGT_2005_25_3_a16
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Ramírez, Laura
%A Mejía, Hugo
%T Kernels in monochromatic path digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 407-417
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a16/
%G en
%F DMGT_2005_25_3_a16
Galeana-Sánchez, Hortensia; Ramírez, Laura; Mejía, Hugo. Kernels in monochromatic path digraphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 407-417. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a16/

[1] C. Berge, Graphs (North-Holland, Amsterdam, 1985).

[2] C. Berge and A. Ramachandra Rao, A combinatorial problem in logic, Discrete Math. 17 (1977) 23-26, doi: 10.1016/0012-365X(77)90018-8.

[3] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112.

[4] P. Duchet and H. Meyniel, Une généralization du théoréme de Richardson sur l'existence du noyaux dans les graphes orientés, Discrete Math. 43 (1983) 21-27, doi: 10.1016/0012-365X(83)90017-1.

[5] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.

[6] H. Galeana-Sánchez, L. Pastrana Ramírez and H.A. Rincón-Mejía, Semikernels, quasikernels and Grundy functions in the line digraph, SIAM J. Disc. Math. 1 (1999) 80-83.

[7] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V.

[8] H. Galeana-Sánchez and Xueliang Li, Semikernels and (k,l)-kernels in digraphs, SIAM J. Discrete Math. 11 (1998) 340-346, doi: 10.1137/S0895480195291370.

[9] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3.

[10] H. Galeana-Sánchez and L. Pastrana Ramírez, Kernels in edge coloured line digraph, Discuss. Math. Graph Theory 18 (1998) 91-98, doi: 10.7151/dmgt.1066.

[11] H. Galeana-Sánchez and José de Jesús García-Ruvalcaba, Kernels in the closure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-254, doi: 10.7151/dmgt.1123.

[12] M. Harminc, Solutions and kernels of a directed graph, Math. Slovaca 32 (1982) 263-267.

[13] J. Von Neumann and O. Morgenstern, Theory of games and economic behavior (Princeton University Press, Princeton, NJ, 1944).

[14] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8.

[15] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7.