A note on maximal common subgraphs of the Dirac's family of graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 385-390
Cet article a éte moissonné depuis la source Library of Science
Let ⁿ be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set ⁿ is a common subgraph F of order n of each member of ⁿ, that is not properly contained in any larger common subgraph of each member of ⁿ. By well-known Dirac's Theorem, the Dirac's family ⁿ of the graphs of order n and minimum degree δ ≥ [n/2] has a maximal common subgraph containing Cₙ. In this note we study the problem of determining all maximal common subgraphs of the Dirac's family ^2n for n ≥ 2.
Keywords:
maximal common subgraph, Dirac's family, Hamiltonian cycle
@article{DMGT_2005_25_3_a14,
author = {Bucko, Jozef and Mih\'ok, Peter and Sacl\'e, Jean-Fran\c{c}ois and Wo\'zniak, Mariusz},
title = {A note on maximal common subgraphs of the {Dirac's} family of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {385--390},
year = {2005},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a14/}
}
TY - JOUR AU - Bucko, Jozef AU - Mihók, Peter AU - Saclé, Jean-François AU - Woźniak, Mariusz TI - A note on maximal common subgraphs of the Dirac's family of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2005 SP - 385 EP - 390 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a14/ LA - en ID - DMGT_2005_25_3_a14 ER -
%0 Journal Article %A Bucko, Jozef %A Mihók, Peter %A Saclé, Jean-François %A Woźniak, Mariusz %T A note on maximal common subgraphs of the Dirac's family of graphs %J Discussiones Mathematicae. Graph Theory %D 2005 %P 385-390 %V 25 %N 3 %U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a14/ %G en %F DMGT_2005_25_3_a14
Bucko, Jozef; Mihók, Peter; Saclé, Jean-François; Woźniak, Mariusz. A note on maximal common subgraphs of the Dirac's family of graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 385-390. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a14/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London; Elsevier, New York, 1976).
[2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[3] V. Chvátal, New directions in Hamiltonian graph theory in: New Directions in the Theory of Graphs (Academic Press, New York, 1973) 65-95.
[4] O. Ore, On a graph theorem by Dirac J. Combin. Theory 2 (1967) 383-392, doi: 10.1016/S0021-9800(67)80036-X.