On γ-labelings of trees
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 363-383.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f:V(G) → 0,1,2,...,m that induces a labeling f': E(G) → 1,2,...,m of the edges of G defined by f'(e) = |f(u)-f(v)| for each edge e = uv of G. The value of a γ-labeling f is val(f) = Σ_e ∈ E(G)f'K(e). The maximum value of a γ-labeling of G is defined as
Keywords: γ-labeling, value of a γ-labeling
@article{DMGT_2005_25_3_a13,
     author = {Chartrand, Gary and Erwin, David and VanderJagt, Donald and Zhang, Ping},
     title = {On \ensuremath{\gamma}-labelings of trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {363--383},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a13/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Erwin, David
AU  - VanderJagt, Donald
AU  - Zhang, Ping
TI  - On γ-labelings of trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 363
EP  - 383
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a13/
LA  - en
ID  - DMGT_2005_25_3_a13
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Erwin, David
%A VanderJagt, Donald
%A Zhang, Ping
%T On γ-labelings of trees
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 363-383
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a13/
%G en
%F DMGT_2005_25_3_a13
Chartrand, Gary; Erwin, David; VanderJagt, Donald; Zhang, Ping. On γ-labelings of trees. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 363-383. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a13/

[1] G. Chartrand, D. Erwin, D.W. VanderJagt and P. Zhang, γ-Labelings of graphs, Bull. Inst. Combin. Appl. 44 (2005) 51-68.

[2] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. #DS6 (Oct. 2003 Version).

[3] S.M. Hegde, On (k,d)-graceful graphs, J. Combin. Inform. System Sci. 25 (2000) 255-265.