On the p-domination number of cactus graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 355-361
Cet article a éte moissonné depuis la source Library of Science
Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.
Keywords:
p-domination number, cactus graphs
@article{DMGT_2005_25_3_a12,
author = {Blidia, Mostafa and Chellali, Mustapha and Volkmann, Lutz},
title = {On the p-domination number of cactus graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {355--361},
year = {2005},
volume = {25},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a12/}
}
TY - JOUR AU - Blidia, Mostafa AU - Chellali, Mustapha AU - Volkmann, Lutz TI - On the p-domination number of cactus graphs JO - Discussiones Mathematicae. Graph Theory PY - 2005 SP - 355 EP - 361 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a12/ LA - en ID - DMGT_2005_25_3_a12 ER -
Blidia, Mostafa; Chellali, Mustapha; Volkmann, Lutz. On the p-domination number of cactus graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 355-361. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a12/
[1] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, submitted for publication.
[2] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.
[3] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 301-312.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).