On the p-domination number of cactus graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 355-361.

Voir la notice de l'article provenant de la source Library of Science

Let p be a positive integer and G = (V,E) a graph. A subset S of V is a p-dominating set if every vertex of V-S is dominated at least p times. The minimum cardinality of a p-dominating set a of G is the p-domination number γₚ(G). It is proved for a cactus graph G that γₚ(G) ⩽ (|V| + |Lₚ(G)| + c(G))/2, for every positive integer p ⩾ 2, where Lₚ(G) is the set of vertices of G of degree at most p-1 and c(G) is the number of odd cycles in G.
Keywords: p-domination number, cactus graphs
@article{DMGT_2005_25_3_a12,
     author = {Blidia, Mostafa and Chellali, Mustapha and Volkmann, Lutz},
     title = {On the p-domination number of cactus graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {355--361},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a12/}
}
TY  - JOUR
AU  - Blidia, Mostafa
AU  - Chellali, Mustapha
AU  - Volkmann, Lutz
TI  - On the p-domination number of cactus graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 355
EP  - 361
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a12/
LA  - en
ID  - DMGT_2005_25_3_a12
ER  - 
%0 Journal Article
%A Blidia, Mostafa
%A Chellali, Mustapha
%A Volkmann, Lutz
%T On the p-domination number of cactus graphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 355-361
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a12/
%G en
%F DMGT_2005_25_3_a12
Blidia, Mostafa; Chellali, Mustapha; Volkmann, Lutz. On the p-domination number of cactus graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 355-361. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a12/

[1] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, submitted for publication.

[2] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.

[3] J.F. Fink and M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 301-312.

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).