Dominating bipartite subgraphs in graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 85-94.

Voir la notice de l'article provenant de la source Library of Science

A graph G is hereditarily dominated by a class of connected graphs if each connected induced subgraph of G contains a dominating induced subgraph belonging to . In this paper we characterize graphs hereditarily dominated by classes of complete bipartite graphs, stars, connected bipartite graphs, and complete k-partite graphs.
Keywords: dominating set, dominating subgraph, forbidden induced subgraph, bipartite graph, k-partite graph
@article{DMGT_2005_25_1-2_a9,
     author = {Bacs\'o, G\'abor and Michalak, Danuta and Tuza, Zsolt},
     title = {Dominating bipartite subgraphs in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {85--94},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a9/}
}
TY  - JOUR
AU  - Bacsó, Gábor
AU  - Michalak, Danuta
AU  - Tuza, Zsolt
TI  - Dominating bipartite subgraphs in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 85
EP  - 94
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a9/
LA  - en
ID  - DMGT_2005_25_1-2_a9
ER  - 
%0 Journal Article
%A Bacsó, Gábor
%A Michalak, Danuta
%A Tuza, Zsolt
%T Dominating bipartite subgraphs in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 85-94
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a9/
%G en
%F DMGT_2005_25_1-2_a9
Bacsó, Gábor; Michalak, Danuta; Tuza, Zsolt. Dominating bipartite subgraphs in graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 85-94. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a9/

[1] G. Bacsó and Zs. Tuza, Dominating cliques in P₅-free graphs, Periodica Math. Hungar. 21 (1990) 303-308, doi: 10.1007/BF02352694.

[2] G. Bacsó and Zs. Tuza, Domination properties and induced subgraphs, Discrete Math. 111 (1993) 37-40, doi: 10.1016/0012-365X(93)90138-J.

[3] G. Bacsó and Zs. Tuza, Structural domination in graphs, Ars Combin. 63 (2002) 235-256.

[4] G. Bacsó, Zs. Tuza and M. Voigt, Characterization of graphs dominated by paths of bounded length, to appear.

[5] M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, in: Topics on Domination (R. Laskar and S. Hedetniemi, eds.), Discrete Math. 86 (1990) 101-116.

[6] J. Liu and H. Zhou, Dominating subgraphs in graphs with some forbidden structures, Discrete Math. 135 (1994) 163-168, doi: 10.1016/0012-365X(93)E0111-G.

[7] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Math. Soc. 3 (1962) 789-795, doi: 10.1090/S0002-9939-1962-0172273-0.