Maximal hypergraphs with respect to the bounded cost hereditary property
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 67-77.

Voir la notice de l'article provenant de la source Library of Science

The hereditary property of hypergraphs generated by the cost colouring notion is considered in the paper. First, we characterize all maximal graphs with respect to this property. Second, we give the generating function for the sequence describing the number of such graphs with the numbered order. Finally, we construct a maximal hypergraph for each admissible number of vertices showing some density property. All results can be applied to the problem of information storage.
Keywords: cost colouring, hereditary property, maximal hypergraphs
@article{DMGT_2005_25_1-2_a7,
     author = {Drgas-Burchardt, Ewa and Fiedorowicz, Anna},
     title = {Maximal hypergraphs with respect to the bounded cost hereditary property},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {67--77},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a7/}
}
TY  - JOUR
AU  - Drgas-Burchardt, Ewa
AU  - Fiedorowicz, Anna
TI  - Maximal hypergraphs with respect to the bounded cost hereditary property
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 67
EP  - 77
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a7/
LA  - en
ID  - DMGT_2005_25_1-2_a7
ER  - 
%0 Journal Article
%A Drgas-Burchardt, Ewa
%A Fiedorowicz, Anna
%T Maximal hypergraphs with respect to the bounded cost hereditary property
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 67-77
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a7/
%G en
%F DMGT_2005_25_1-2_a7
Drgas-Burchardt, Ewa; Fiedorowicz, Anna. Maximal hypergraphs with respect to the bounded cost hereditary property. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 67-77. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a7/

[1] C. Berge, Hypergraphs (North-Holland, Amsterdam, 1989).

[2] E. Kubicka and A.J. Schwenk, An introduction to chromatic sums, in: Proceedings of the Seventeenth, Annual ACM Computer Sciences Conference (ACM Press) (1989) 39-45.

[3] J. Mitchem and P. Morriss, On the cost chromatic number of graphs, Discrete Math. 171 (1997) 201-211, doi: 10.1016/S0012-365X(96)00005-2.

[4] J. Riordan, An Introduction to Combinatorial Analysis (New York, 1958).