Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_1-2_a6, author = {Dzido, Tomasz}, title = {Multicolor {Ramsey} numbers for paths and cycles}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {57--65}, publisher = {mathdoc}, volume = {25}, number = {1-2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/} }
Dzido, Tomasz. Multicolor Ramsey numbers for paths and cycles. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 57-65. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/
[1] J. Arste, K. Klamroth and I. Mengersen, Three color Ramsey numbers for small graphs, Utilitas Mathematica 49 (1996) 85-96.
[2] J.A. Bondy and P. Erdös, Ramsey numbers for cycles in graphs, J. Combin. Theory (B) 14 (1973) 46-54, doi: 10.1016/S0095-8956(73)80005-X.
[3] A. Burr and P. Erdös, Generalizations of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983) 39-51, doi: 10.1002/jgt.3190070106.
[4] C. Clapham, The Ramsey number R(C₄,C₄,C₄), Periodica Mathematica Hungarica 18 (1987) 317-318, doi: 10.1007/BF01848105.
[5] T. Dzido, Computer experience from calculating some 3-color Ramsey numbers (Technical Report of Gdańsk University of Technology ETI Faculty, 2003).
[6] R. Faudree, A. Schelten and I. Schiermeyer, The Ramsey number R(C₇,C₇,C₇), Discuss. Math. Graph Theory 23 (2003) 141-158, doi: 10.7151/dmgt.1191.
[7] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canadian J. Math. 7 (1955) 1-7, doi: 10.4153/CJM-1955-001-4.
[8] T. Łuczak, R(Cₙ,Cₙ,Cₙ) ≤ (4+o(1))n, J. Combin. Theory (B) 75 (1999) 174-187.
[9] S.P. Radziszowski, Small Ramsey numbers, Electronic J. Combin. Dynamic Survey 1, revision #9, July 2002, http://www.combinatorics.org/.
[10] P. Rowlison and Y. Yang, On the third Ramsey numbers of graphs with five edges, J. Combin. Math. and Combin. Comp. 11 (1992) 213-222.
[11] P. Rowlison and Y. Yang, On Graphs without 6-cycles and related Ramsey numbers, Utilitas Mathematica 44 (1993) 192-196.
[12] D.R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. 24 (1972) 739-755, doi: 10.1112/plms/s3-24.4.739.