Multicolor Ramsey numbers for paths and cycles
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 57-65

Voir la notice de l'article provenant de la source Library of Science

For given graphs G₁,G₂,...,Gₖ, k ≥ 2, the multicolor Ramsey number R(G₁,G₂,...,Gₖ) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some G_i, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cₘ,Cₘ,...,Cₘ), where m ≥ 8 is even and Cₘ is the cycle on m vertices. In addition, we provide exact values for Ramsey numbers R(P₃,Cₘ,Cₚ), where P₃ is the path on 3 vertices, and several values for R(Pₗ,Pₘ,Cₚ), where l,m,p ≥ 2. In this paper we present new results in this field as well as some interesting conjectures.
Keywords: edge coloring, Ramsey number
@article{DMGT_2005_25_1-2_a6,
     author = {Dzido, Tomasz},
     title = {Multicolor {Ramsey} numbers for paths and cycles},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {57--65},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/}
}
TY  - JOUR
AU  - Dzido, Tomasz
TI  - Multicolor Ramsey numbers for paths and cycles
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 57
EP  - 65
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/
LA  - en
ID  - DMGT_2005_25_1-2_a6
ER  - 
%0 Journal Article
%A Dzido, Tomasz
%T Multicolor Ramsey numbers for paths and cycles
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 57-65
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/
%G en
%F DMGT_2005_25_1-2_a6
Dzido, Tomasz. Multicolor Ramsey numbers for paths and cycles. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 57-65. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/