Multicolor Ramsey numbers for paths and cycles
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 57-65.

Voir la notice de l'article provenant de la source Library of Science

For given graphs G₁,G₂,...,Gₖ, k ≥ 2, the multicolor Ramsey number R(G₁,G₂,...,Gₖ) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some G_i, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cₘ,Cₘ,...,Cₘ), where m ≥ 8 is even and Cₘ is the cycle on m vertices. In addition, we provide exact values for Ramsey numbers R(P₃,Cₘ,Cₚ), where P₃ is the path on 3 vertices, and several values for R(Pₗ,Pₘ,Cₚ), where l,m,p ≥ 2. In this paper we present new results in this field as well as some interesting conjectures.
Keywords: edge coloring, Ramsey number
@article{DMGT_2005_25_1-2_a6,
     author = {Dzido, Tomasz},
     title = {Multicolor {Ramsey} numbers for paths and cycles},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {57--65},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/}
}
TY  - JOUR
AU  - Dzido, Tomasz
TI  - Multicolor Ramsey numbers for paths and cycles
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 57
EP  - 65
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/
LA  - en
ID  - DMGT_2005_25_1-2_a6
ER  - 
%0 Journal Article
%A Dzido, Tomasz
%T Multicolor Ramsey numbers for paths and cycles
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 57-65
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/
%G en
%F DMGT_2005_25_1-2_a6
Dzido, Tomasz. Multicolor Ramsey numbers for paths and cycles. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 57-65. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a6/

[1] J. Arste, K. Klamroth and I. Mengersen, Three color Ramsey numbers for small graphs, Utilitas Mathematica 49 (1996) 85-96.

[2] J.A. Bondy and P. Erdös, Ramsey numbers for cycles in graphs, J. Combin. Theory (B) 14 (1973) 46-54, doi: 10.1016/S0095-8956(73)80005-X.

[3] A. Burr and P. Erdös, Generalizations of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983) 39-51, doi: 10.1002/jgt.3190070106.

[4] C. Clapham, The Ramsey number R(C₄,C₄,C₄), Periodica Mathematica Hungarica 18 (1987) 317-318, doi: 10.1007/BF01848105.

[5] T. Dzido, Computer experience from calculating some 3-color Ramsey numbers (Technical Report of Gdańsk University of Technology ETI Faculty, 2003).

[6] R. Faudree, A. Schelten and I. Schiermeyer, The Ramsey number R(C₇,C₇,C₇), Discuss. Math. Graph Theory 23 (2003) 141-158, doi: 10.7151/dmgt.1191.

[7] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canadian J. Math. 7 (1955) 1-7, doi: 10.4153/CJM-1955-001-4.

[8] T. Łuczak, R(Cₙ,Cₙ,Cₙ) ≤ (4+o(1))n, J. Combin. Theory (B) 75 (1999) 174-187.

[9] S.P. Radziszowski, Small Ramsey numbers, Electronic J. Combin. Dynamic Survey 1, revision #9, July 2002, http://www.combinatorics.org/.

[10] P. Rowlison and Y. Yang, On the third Ramsey numbers of graphs with five edges, J. Combin. Math. and Combin. Comp. 11 (1992) 213-222.

[11] P. Rowlison and Y. Yang, On Graphs without 6-cycles and related Ramsey numbers, Utilitas Mathematica 44 (1993) 192-196.

[12] D.R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. 24 (1972) 739-755, doi: 10.1112/plms/s3-24.4.739.