Domination numbers in graphs with removed edge or set of edges
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 51-56
Cet article a éte moissonné depuis la source Library of Science
It is known that the removal of an edge from a graph G cannot decrease a domination number γ(G) and can increase it by at most one. Thus we can write that γ(G) ≤ γ(G-e) ≤ γ(G)+1 when an arbitrary edge e is removed. Here we present similar inequalities for the weakly connected domination number γ_w and the connected domination number γ_c, i.e., we show that γ_w(G) ≤ γ_w(G-e) ≤ γ_w(G)+1 and γ_c(G) ≤ γ_c(G-e) ≤ γ_c(G) + 2 if G and G-e are connected. Additionally we show that γ_w(G) ≤ γ_w(G-Eₚ) ≤ γ_w(G) + p - 1 and γ_c(G) ≤ γ_c(G -Eₚ) ≤ γ_c(G) + 2p - 2 if G and G - Eₚ are connected and Eₚ = E(Hₚ) where Hₚ of order p is a connected subgraph of G.
Keywords:
connected domination number, weakly connected domination number, edge removal
@article{DMGT_2005_25_1-2_a5,
author = {Lema\'nska, Magdalena},
title = {Domination numbers in graphs with removed edge or set of edges},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {51--56},
year = {2005},
volume = {25},
number = {1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a5/}
}
Lemańska, Magdalena. Domination numbers in graphs with removed edge or set of edges. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 51-56. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a5/
[1] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of domination in graphs (Marcel Dekker, Inc. 1998).
[2] J. Topp, Domination, independence and irredundance in graphs, Dissertationes Mathematicae 342 (PWN, Warszawa, 1995).