Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_1-2_a16, author = {Bylka, Stanis{\l}aw}, title = {Arithmetically maximal independent sets in infinite graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {167--182}, publisher = {mathdoc}, volume = {25}, number = {1-2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a16/} }
Bylka, Stanisław. Arithmetically maximal independent sets in infinite graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 167-182. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a16/
[1] R. Aharoni, König's duality theorem for infinite bipartite graphs, J. London Math. Society 29 (1984) 1-12, doi: 10.1112/jlms/s2-29.1.1.
[2] J.C. Bermond and J.C. Meyer, Graphe représentatif des aretes d'un multigraphe, J. Math. Pures Appl. 52 (1973) 229-308.
[3] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107, doi: 10.1002/jgt.3190150110.
[4] M.J. Jou and G.J. Chang, Algorithmic aspects of counting independent sets, Ars Combinatoria 65 (2002) 265-277.
[5] J. Komar and J. Łoś, König's theorem in the infinite case, Proc. of III Symp. on Operat. Res., Mannheim (1978) 153-155.
[6] C.St.J.A. Nash-Williams, Infinite graphs - a survey, J. Combin. Theory 3 (1967) 286-301, doi: 10.1016/S0021-9800(67)80077-2.
[7] K.P. Podewski and K. Steffens, Injective choice functions for countable families, J. Combin. Theory (B) 21 (1976) 40-46, doi: 10.1016/0095-8956(76)90025-3.
[8] K. Steffens, Matching in countable graphs, Can. J. Math. 29 (1976) 165-168, doi: 10.4153/CJM-1977-016-8.
[9] J. Zito, The structure and maximum number of maximum independent sets in trees, J. Graph Theory 15 (1991) 207-221, doi: 10.1002/jgt.3190150208.