On (k,l)-kernel perfectness of special classes of digraphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 103-119.

Voir la notice de l'article provenant de la source Library of Science

In the first part of this paper we give necessary and sufficient conditions for some special classes of digraphs to have a (k,l)-kernel. One of them is the duplication of a set of vertices in a digraph. This duplication come into being as the generalization of the duplication of a vertex in a graph (see [4]). Another one is the D-join of a digraph D and a sequence α of nonempty pairwise disjoint digraphs. In the second part we prove theorems, which give necessary and sufficient conditions for special digraphs presented in the first part to be (k,l)-kernel-perfect digraphs. The concept of a (k,l)-kernel-perfect digraph is the generalization of the well-know idea of a kernel perfect digraph, which was considered in [1] and [6].
Keywords: kernel, (k,l)-kernel, kernel-perfect digraph
@article{DMGT_2005_25_1-2_a11,
     author = {Kucharska, Magdalena},
     title = {On (k,l)-kernel perfectness of special classes of digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {103--119},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a11/}
}
TY  - JOUR
AU  - Kucharska, Magdalena
TI  - On (k,l)-kernel perfectness of special classes of digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 103
EP  - 119
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a11/
LA  - en
ID  - DMGT_2005_25_1-2_a11
ER  - 
%0 Journal Article
%A Kucharska, Magdalena
%T On (k,l)-kernel perfectness of special classes of digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 103-119
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a11/
%G en
%F DMGT_2005_25_1-2_a11
Kucharska, Magdalena. On (k,l)-kernel perfectness of special classes of digraphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 103-119. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a11/

[1] C. Berge and P. Duchet, Perfect graphs and kernels, Bulletin of the Institute of Mathematics Academia Sinica 16 (1988) 263-274.

[2] M. Blidia, P. Duchet, H. Jacob, F. Maffray and H. Meyniel, Some operations preserving the existence of kernels, Discrete Math. 205 (1999) 211-216, doi: 10.1016/S0012-365X(99)00026-6.

[3] M. Borowiecki and A. Szelecka, One-factorizations of the generalized Cartesian product and of the X-join of regular graphs, Discuss. Math. Graph Theory 13 (1993) 15-19.

[4] M. Burlet and J. Uhry, Parity graphs, Annals of Discrete Math. 21 (1984) 253-277

[5] R. Diestel, Graph Theory (Springer-Verlag New-York, Inc., 1997).

[6] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112.

[7] H. Galeana-Sánchez, On the existence of (k,l)-kernels in digraphs, Discrete Math. 85 (1990) 99-102, doi: 10.1016/0012-365X(90)90167-G.

[8] H. Galeana-Sánchez, On the existence of kernels and h-kernels in directed graphs, Discrete Math. 110 (1992) 251-255, doi: 10.1016/0012-365X(92)90713-P.

[9] H. Galeana-Sanchez and V. Neumann-Lara, On the dichromatic number in kernel theory, Math. Slovaca 48 (1998) 213-219.

[10] H. Jacob, Etude theórique du noyau d' un graphe (Thèse, Univesitè Pierre et Marie Curie, Paris VI, 1979).

[11] M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combin. 60 (2001) 137-147.

[12] M. Kucharska and M. Kwaśnik, On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ, Discuss. Math. Graph Theory 21 (2001) 95-109, doi: 10.7151/dmgt.1135.

[13] M. Kwaśnik, On (k,l)-kernels in graphs and their products (PhD Thesis, Technical University of Wrocław, Wrocław, 1980).

[14] A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301, doi: 10.1016/S0012-365X(96)00064-7.