Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_1-2_a10, author = {Idzik, Adam and Junosza-Szaniawski, Konstanty}, title = {Combinatorial lemmas for polyhedrons}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {95--102}, publisher = {mathdoc}, volume = {25}, number = {1-2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a10/} }
TY - JOUR AU - Idzik, Adam AU - Junosza-Szaniawski, Konstanty TI - Combinatorial lemmas for polyhedrons JO - Discussiones Mathematicae. Graph Theory PY - 2005 SP - 95 EP - 102 VL - 25 IS - 1-2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a10/ LA - en ID - DMGT_2005_25_1-2_a10 ER -
Idzik, Adam; Junosza-Szaniawski, Konstanty. Combinatorial lemmas for polyhedrons. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 95-102. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a10/
[1] T. Ichiishi and A. Idzik, Closed coverings of convex polyhedra, Internat. J. Game Theory 20 (1991) 161-169, doi: 10.1007/BF01240276.
[2] T. Ichiishi and A. Idzik, Equitable allocation of divisible goods, J. Math. Econom. 32 (1998) 389-400, doi: 10.1016/S0304-4068(98)00053-6.
[3] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387-398.
[4] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fund. Math. 14 (1929) 132-137.
[5] W. Kulpa, Poincaré and domain invariance theorem, Acta Univ. Carolinae - Mathematica et Physica 39 (1998) 127-136.
[6] G. van der Laan, D. Talman and Z. Yang, Intersection theorems on polytypes, Math. Programming 84 (1999) 333-352.
[7] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25-38, doi: 10.1006/jcta.2001.3178.
[8] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming (New York: Academic Press, 1973) 261-290.
[9] E. Sperner, Neuer beweis für die invarianz der dimensionszahl und des gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265-272, doi: 10.1007/BF02940617.