Combinatorial lemmas for polyhedrons
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 95-102.

Voir la notice de l'article provenant de la source Library of Science

We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.
Keywords: KKM covering, labelling, primoid, pseudomanifold, simplicial complex, Sperner lemma
@article{DMGT_2005_25_1-2_a10,
     author = {Idzik, Adam and Junosza-Szaniawski, Konstanty},
     title = {Combinatorial lemmas for polyhedrons},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a10/}
}
TY  - JOUR
AU  - Idzik, Adam
AU  - Junosza-Szaniawski, Konstanty
TI  - Combinatorial lemmas for polyhedrons
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 95
EP  - 102
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a10/
LA  - en
ID  - DMGT_2005_25_1-2_a10
ER  - 
%0 Journal Article
%A Idzik, Adam
%A Junosza-Szaniawski, Konstanty
%T Combinatorial lemmas for polyhedrons
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 95-102
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a10/
%G en
%F DMGT_2005_25_1-2_a10
Idzik, Adam; Junosza-Szaniawski, Konstanty. Combinatorial lemmas for polyhedrons. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 95-102. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a10/

[1] T. Ichiishi and A. Idzik, Closed coverings of convex polyhedra, Internat. J. Game Theory 20 (1991) 161-169, doi: 10.1007/BF01240276.

[2] T. Ichiishi and A. Idzik, Equitable allocation of divisible goods, J. Math. Econom. 32 (1998) 389-400, doi: 10.1016/S0304-4068(98)00053-6.

[3] A. Idzik and K. Junosza-Szaniawski, Combinatorial lemmas for nonoriented pseudomanifolds, Top. Meth. in Nonlin. Anal. 22 (2003) 387-398.

[4] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fund. Math. 14 (1929) 132-137.

[5] W. Kulpa, Poincaré and domain invariance theorem, Acta Univ. Carolinae - Mathematica et Physica 39 (1998) 127-136.

[6] G. van der Laan, D. Talman and Z. Yang, Intersection theorems on polytypes, Math. Programming 84 (1999) 333-352.

[7] G. van der Laan, D. Talman and Z. Yang, Existence of balanced simplices on polytopes, J. Combin. Theory (A) 96 (2001) 25-38, doi: 10.1006/jcta.2001.3178.

[8] L.S. Shapley, On balanced games without side payments, in: T.C. Hu and S.M. Robinson (eds.), Mathematical Programming (New York: Academic Press, 1973) 261-290.

[9] E. Sperner, Neuer beweis für die invarianz der dimensionszahl und des gebiets, Abh. Math. Sem. Univ. Hamburg 6 (1928) 265-272, doi: 10.1007/BF02940617.