On domination in graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 7-12.

Voir la notice de l'article provenant de la source Library of Science

For a finite undirected graph G on n vertices two continuous optimization problems taken over the n-dimensional cube are presented and it is proved that their optimum values equal the domination number γ of G. An efficient approximation method is developed and known upper bounds on γ are slightly improved.
Keywords: graph, domination
@article{DMGT_2005_25_1-2_a0,
     author = {G\"oring, Frank and Harant, Jochen},
     title = {On domination in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {7--12},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a0/}
}
TY  - JOUR
AU  - Göring, Frank
AU  - Harant, Jochen
TI  - On domination in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 7
EP  - 12
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a0/
LA  - en
ID  - DMGT_2005_25_1-2_a0
ER  - 
%0 Journal Article
%A Göring, Frank
%A Harant, Jochen
%T On domination in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 7-12
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a0/
%G en
%F DMGT_2005_25_1-2_a0
Göring, Frank; Harant, Jochen. On domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 7-12. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a0/

[1] Y. Caro, New results on the independence number (Technical Report, Tel-Aviv University, 1979).

[2] Y. Caro and Zs. Tuza, Improved lower bounds on k-independence, J. Graph Theory 15 (1991) 99-107, doi: 10.1002/jgt.3190150110.

[3] R. Diestel, Graph Theory, Graduate Texts in Mathematics (Springer, 1997).

[4] N. Alon, J.H. Spencer and P. Erdös, The Probabilistic Method (John Wiley and Sons, Inc. 1992), page 6.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979).

[6] J. Harant, Some news about the independence number of a graph, Discuss. Math. Graph Theory 20 (2000) 71-79, doi: 10.7151/dmgt.1107.

[7] J. Harant, A. Pruchnewski and M. Voigt, On dominating sets and independent sets of graphs, Combinatorics, Probability and Computing 8 (1999) 547-553, doi: 10.1017/S0963548399004034.

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, N.Y., 1998), page 52.

[9] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).