Total domination subdivision numbers of graphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 457-467.

Voir la notice de l'article provenant de la source Library of Science

A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. First we establish bounds on the total domination subdivision number for some families of graphs. Then we show that the total domination subdivision number of a graph can be arbitrarily large.
Keywords: total domination number, total domination subdivision number
@article{DMGT_2004_24_3_a8,
     author = {Haynes, Teresa and Henning, Michael and Hopkins, Lora},
     title = {Total domination subdivision numbers of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {457--467},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a8/}
}
TY  - JOUR
AU  - Haynes, Teresa
AU  - Henning, Michael
AU  - Hopkins, Lora
TI  - Total domination subdivision numbers of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 457
EP  - 467
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a8/
LA  - en
ID  - DMGT_2004_24_3_a8
ER  - 
%0 Journal Article
%A Haynes, Teresa
%A Henning, Michael
%A Hopkins, Lora
%T Total domination subdivision numbers of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 457-467
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a8/
%G en
%F DMGT_2004_24_3_a8
Haynes, Teresa; Henning, Michael; Hopkins, Lora. Total domination subdivision numbers of graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 457-467. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a8/

[1] S. Arumugam, private communication, June, 2000.

[2] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.

[3] O. Favaron, T.W. Haynes, and S.T. Hedetniemi, Domination subdivision numbers in graphs, submitted for publication.

[4] T.W. Haynes, S.M. Hedetniemi, and S.T. Hedetniemi, Domination and independence subdivision numbers of graphs, Discuss. Math. Graph Theory 20 (2000) 271-280, doi: 10.7151/dmgt.1126.

[5] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisely, and L.C. van der Merwe, Domination subdivision numbers, Discuss. Math. Graph Theory 21 (2001) 239-253, doi: 10.7151/dmgt.1147.

[6] T.W. Haynes, M.A. Henning, and L.S. Hopkins, Total domination subdivision numbers in trees, submitted for publication.

[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[9] T.W. Haynes, S.T. Hedetniemi, and L.C. van der Merwe, Total domination subdivision numbers, J. Combin. Math. Combin. Comput. 44 (2003) 115-128.