Some remarks on α-domination
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 423-430.

Voir la notice de l'article provenant de la source Library of Science

Let α ∈ (0,1) and let G = (V_G,E_G) be a graph. According to Dunbar, Hoffman, Laskar and Markus [3] a set D ⊆ V_G is called an α-dominating set of G, if |N_G(u) ∩ D| ≥ αd_G(u) for all u ∈ V_G∖D. We prove a series of upper bounds on the α-domination number of a graph G defined as the minimum cardinality of an α-dominating set of G.
Keywords: α-domination, domination
@article{DMGT_2004_24_3_a5,
     author = {Dahme, Franz and Rautenbach, Dieter and Volkmann, Lutz},
     title = {Some remarks on \ensuremath{\alpha}-domination},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {423--430},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a5/}
}
TY  - JOUR
AU  - Dahme, Franz
AU  - Rautenbach, Dieter
AU  - Volkmann, Lutz
TI  - Some remarks on α-domination
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 423
EP  - 430
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a5/
LA  - en
ID  - DMGT_2004_24_3_a5
ER  - 
%0 Journal Article
%A Dahme, Franz
%A Rautenbach, Dieter
%A Volkmann, Lutz
%T Some remarks on α-domination
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 423-430
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a5/
%G en
%F DMGT_2004_24_3_a5
Dahme, Franz; Rautenbach, Dieter; Volkmann, Lutz. Some remarks on α-domination. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 423-430. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a5/

[1] N. Alon and J. Spencer, The probabilistic method, 2nd ed., (Wiley-Interscience Series in Discrete Math. and Optimization, 2000), doi: 10.1002/0471722154.

[2] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat. 23(1952) 493-507, doi: 10.1214/aoms/1177729330.

[3] J.E. Dunbar, D.G. Hoffman, R.C. Laskar and L.R. Markus, α-domination, Discrete Math. 211 (2000) 11-26, doi: 10.1016/S0012-365X(99)00131-4.

[4] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, New York, 1998).

[6] F. Dahme, D. Rautenbach and L. Volkmann, α-domination perfect trees, manuscript (2002).

[7] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI, 1962).

[8] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104.

[9] D.R. Woodall, Improper colourings of graphs, Pitman Res. Notes Math. Ser. 218 (1988) 45-63.