On 3-simplicial vertices in planar graphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 413-421.

Voir la notice de l'article provenant de la source Library of Science

A vertex v in a graph G = (V,E) is k-simplicial if the neighborhood N(v) of v can be vertex-covered by k or fewer complete graphs. The main result of the paper states that a planar graph of order at least four has at least four 3-simplicial vertices of degree at most five. This result is a strengthening of the classical corollary of Euler's Formula that a planar graph of order at least four contains at least four vertices of degree at most five.
Keywords: planar graph, outerplanar graph, 3-simplicial vertex
@article{DMGT_2004_24_3_a4,
     author = {Boros, Endre and Jamison, Robert and Laskar, Renu and Mulder, Henry},
     title = {On 3-simplicial vertices in planar graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {413--421},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/}
}
TY  - JOUR
AU  - Boros, Endre
AU  - Jamison, Robert
AU  - Laskar, Renu
AU  - Mulder, Henry
TI  - On 3-simplicial vertices in planar graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 413
EP  - 421
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/
LA  - en
ID  - DMGT_2004_24_3_a4
ER  - 
%0 Journal Article
%A Boros, Endre
%A Jamison, Robert
%A Laskar, Renu
%A Mulder, Henry
%T On 3-simplicial vertices in planar graphs
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 413-421
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/
%G en
%F DMGT_2004_24_3_a4
Boros, Endre; Jamison, Robert; Laskar, Renu; Mulder, Henry. On 3-simplicial vertices in planar graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 413-421. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/

[1] F. Gavril, The intersection graph of subtrees in a tree are exactly the chordal graphs, J. Combin. Theory 16 (1974) 47-56, doi: 10.1016/0095-8956(74)90094-X.

[2] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).

[3] R.E. Jamison and H.M. Mulder, Tolerance intersection graphs on binary trees with constant tolerance 3, Discrete Math. 215 (2000) 115-131, doi: 10.1016/S0012-365X(99)00231-9.

[4] B. Grünbaum and T.S. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. Math. 15 (1963) 744-751, doi: 10.4153/CJM-1963-071-3.

[5] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.