Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_3_a4, author = {Boros, Endre and Jamison, Robert and Laskar, Renu and Mulder, Henry}, title = {On 3-simplicial vertices in planar graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {413--421}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/} }
TY - JOUR AU - Boros, Endre AU - Jamison, Robert AU - Laskar, Renu AU - Mulder, Henry TI - On 3-simplicial vertices in planar graphs JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 413 EP - 421 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/ LA - en ID - DMGT_2004_24_3_a4 ER -
Boros, Endre; Jamison, Robert; Laskar, Renu; Mulder, Henry. On 3-simplicial vertices in planar graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 413-421. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/
[1] F. Gavril, The intersection graph of subtrees in a tree are exactly the chordal graphs, J. Combin. Theory 16 (1974) 47-56, doi: 10.1016/0095-8956(74)90094-X.
[2] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).
[3] R.E. Jamison and H.M. Mulder, Tolerance intersection graphs on binary trees with constant tolerance 3, Discrete Math. 215 (2000) 115-131, doi: 10.1016/S0012-365X(99)00231-9.
[4] B. Grünbaum and T.S. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. Math. 15 (1963) 744-751, doi: 10.4153/CJM-1963-071-3.
[5] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.