On 3-simplicial vertices in planar graphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 413-421
Voir la notice de l'article provenant de la source Library of Science
A vertex v in a graph G = (V,E) is k-simplicial if the neighborhood N(v) of v can be vertex-covered by k or fewer complete graphs. The main result of the paper states that a planar graph of order at least four has at least four 3-simplicial vertices of degree at most five. This result is a strengthening of the classical corollary of Euler's Formula that a planar graph of order at least four contains at least four vertices of degree at most five.
Keywords:
planar graph, outerplanar graph, 3-simplicial vertex
@article{DMGT_2004_24_3_a4,
author = {Boros, Endre and Jamison, Robert and Laskar, Renu and Mulder, Henry},
title = {On 3-simplicial vertices in planar graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {413--421},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/}
}
TY - JOUR AU - Boros, Endre AU - Jamison, Robert AU - Laskar, Renu AU - Mulder, Henry TI - On 3-simplicial vertices in planar graphs JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 413 EP - 421 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/ LA - en ID - DMGT_2004_24_3_a4 ER -
Boros, Endre; Jamison, Robert; Laskar, Renu; Mulder, Henry. On 3-simplicial vertices in planar graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 413-421. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a4/