On the structure of plane graphs of minimum face size 5
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 403-411.

Voir la notice de l'article provenant de la source Library of Science

A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is known that a plane graph of minimum face size 5 contains light paths and a light pentagon. In this paper we show that every plane graph of minimum face size 5 contains also a light star K_1,3 and we present a structural result concerning the existence of a pair of adjacent faces with degree-bounded vertices.
Keywords: plane graph, light graph, face size
@article{DMGT_2004_24_3_a3,
     author = {Madaras, Tom\'as},
     title = {On the structure of plane graphs of minimum face size 5},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {403--411},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a3/}
}
TY  - JOUR
AU  - Madaras, Tomás
TI  - On the structure of plane graphs of minimum face size 5
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 403
EP  - 411
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a3/
LA  - en
ID  - DMGT_2004_24_3_a3
ER  - 
%0 Journal Article
%A Madaras, Tomás
%T On the structure of plane graphs of minimum face size 5
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 403-411
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a3/
%G en
%F DMGT_2004_24_3_a3
Madaras, Tomás. On the structure of plane graphs of minimum face size 5. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 403-411. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a3/

[1] H. Enomoto and K. Ota, Connected Subgraphs with Small Degree Sums in 3-Connected Planar Graphs, J. Graph Theory 30 (1999) 191-203, doi: 10.1002/(SICI)1097-0118(199903)30:3191::AID-JGT4>3.0.CO;2-X

[2] I. Fabrici, On vertex-degree restricted subgraphs in polyhedral graphs, Discrete Math. 256 (2002) 105-114, doi: 10.1016/S0012-365X(01)00368-5.

[3] I. Fabrici, J. Harant and S. Jendrol', Paths of low weight in planar graphs, submitted.

[4] I. Fabrici, E. Hexel, S. Jendrol' and H. Walther, On vertex-degree restricted paths in polyhedral graphs, Discrete Math. 212 (2000) 61-73, doi: 10.1016/S0012-365X(99)00209-5.

[5] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combin. 13 (1997) 245-250.

[6] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83-90, doi: 10.1016/S0012-365X(98)00095-8.

[7] J. Harant, S. Jendrol' and M. Tkáč, On 3-connected plane graphs without triangular faces, J. Combin. Theory (B) 77 (1999) 150-161, doi: 10.1006/jctb.1999.1918.

[8] S. Jendrol', T. Madaras, R. Soták and Z. Tuza, On light cycles in plane triangulations, Discrete Math. 197/198 (1999) 453-467.

[9] S. Jendrol' and P. Owens, On light graphs in 3-connected plane graphs without triangular or quadrangular faces, Graphs and Combin. 17 (2001) 659-680, doi: 10.1007/s003730170007.

[10] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Cas. SAV (Math. Slovaca) 5 (1955) 111-113.

[11] H. Lebesgue, Quelques consequences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 19-43.

[12] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968.