A Gallai-type equality for the total domination number of a graph
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 539-543.

Voir la notice de l'article provenant de la source Library of Science

We prove the following Gallai-type equality
Keywords: domination number, total domination number, Gallai equality
@article{DMGT_2004_24_3_a15,
     author = {Zhou, Sanming},
     title = {A {Gallai-type} equality for the total domination number of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {539--543},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a15/}
}
TY  - JOUR
AU  - Zhou, Sanming
TI  - A Gallai-type equality for the total domination number of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 539
EP  - 543
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a15/
LA  - en
ID  - DMGT_2004_24_3_a15
ER  - 
%0 Journal Article
%A Zhou, Sanming
%T A Gallai-type equality for the total domination number of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 539-543
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a15/
%G en
%F DMGT_2004_24_3_a15
Zhou, Sanming. A Gallai-type equality for the total domination number of a graph. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 539-543. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a15/

[1] B. Bollobás, E.J. Cockayne and C.M. Mynhardt, On Generalized Minimal Domination Parameters for Paths, Discrete Math. 86 (1990) 89-97, doi: 10.1016/0012-365X(90)90352-I.

[2] E.J. Cockayne, S.T. Hedetniemi and R. Laskar, Gallai Theorems for Graphs, Hypergraphs and Set Systems, Discrete Math. 72 (1988) 35-47, doi: 10.1016/0012-365X(88)90192-6.

[3] T. Gallai, Über Extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 2 (1959) 133-138.

[4] S.T. Hedetniemi, Hereditary Properties of Graphs, J. Combin. Theory 14 (1973) 16-27.

[5] S.T. Hedetniemi and R. Laskar, Connected Domination in Graphs, in: B. Bollobás ed., Graph Theory and Combinatorics (Academic Press, 1984) 209-218.

[6] J. Nieminen, Two Bounds for the Domination Number of a Graph, J. Inst. Math. Appl. 14 (1974) 183-187, doi: 10.1093/imamat/14.2.183.