Graphs without induced P₅ and C₅
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 503-507.

Voir la notice de l'article provenant de la source Library of Science

Zverovich [Discuss. Math. Graph Theory 23 (2003), 159-162.] has proved that the domination number and connected domination number are equal on all connected graphs without induced P₅ and C₅. Here we show (with an independent proof) that the following stronger result is also valid: Every P₅-free and C₅-free connected graph contains a minimum-size dominating set that induces a complete subgraph.
Keywords: graph domination, connected domination, complete subgraph, forbidden induced subgraph, characterization
@article{DMGT_2004_24_3_a12,
     author = {Bacs\'o, Gabor and Tuza, Zsolt},
     title = {Graphs without induced {P₅} and {C₅}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {503--507},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a12/}
}
TY  - JOUR
AU  - Bacsó, Gabor
AU  - Tuza, Zsolt
TI  - Graphs without induced P₅ and C₅
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 503
EP  - 507
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a12/
LA  - en
ID  - DMGT_2004_24_3_a12
ER  - 
%0 Journal Article
%A Bacsó, Gabor
%A Tuza, Zsolt
%T Graphs without induced P₅ and C₅
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 503-507
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a12/
%G en
%F DMGT_2004_24_3_a12
Bacsó, Gabor; Tuza, Zsolt. Graphs without induced P₅ and C₅. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 503-507. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a12/

[1] G. Bacsó and Zs. Tuza, Dominating cliques in P₅-free graphs, Periodica Math. Hungar. 21 (1990) 303-308, doi: 10.1007/BF02352694.

[2] G. Bacsó and Zs. Tuza, Structural domination of graphs, Ars Combinatoria 63 (2002) 235-256.

[3] F.R.K. Chung, A. Gyárfás, W.T. Trotter and Zs. Tuza, The maximum number of edges in 2K₂-free graphs of bounded degree, Discrete Math. 81 (1990) 129-135, doi: 10.1016/0012-365X(90)90144-7.

[4] M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, Discrete Math. 86 (1990) 101-116, doi: 10.1016/0012-365X(90)90353-J.

[5] W. Goddard and M.A. Henning, Total domination perfect graphs, to appear in Bull. ICA.

[6] I.E. Zverovich, Perfect connected-dominant graphs, Discuss. Math. Graph Theory 23 (2003) 159-162, doi: 10.7151/dmgt.1192.