Centers of n-fold tensor products of graphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 491-501.

Voir la notice de l'article provenant de la source Library of Science

Formulas for vertex eccentricity and radius for the n-fold tensor product G = ⊗_i=1 ⁿG_i of n arbitrary simple graphs G_i are derived. The center of G is characterized as the union of n+1 vertex sets of form V₁×V₂×...×Vₙ, with V_i ⊆ V(G_i).
Keywords: graph tensor product, graphs direct product, graph center
@article{DMGT_2004_24_3_a11,
     author = {Bendall, Sarah and Hammack, Richard},
     title = {Centers of n-fold tensor products of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {491--501},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a11/}
}
TY  - JOUR
AU  - Bendall, Sarah
AU  - Hammack, Richard
TI  - Centers of n-fold tensor products of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 491
EP  - 501
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a11/
LA  - en
ID  - DMGT_2004_24_3_a11
ER  - 
%0 Journal Article
%A Bendall, Sarah
%A Hammack, Richard
%T Centers of n-fold tensor products of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 491-501
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a11/
%G en
%F DMGT_2004_24_3_a11
Bendall, Sarah; Hammack, Richard. Centers of n-fold tensor products of graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 491-501. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a11/

[1] G. Abay-Asmerom and R. Hammack, Centers of tensor products of graphs, Ars Combinatoria 74 (2005).

[2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Third Edition, Chapman Hall/CRC, Boca Raton, FL, 2000).

[3] W. Imrich and S. Klavžar, Product Graphs; Structure and Recognition (Wiley Interscience Series in Discrete Mathematics and Optimization, New York, 2000).

[4] S.-R. Kim, Centers of a tensor composite graph, Congr. Numer. 81 (1991) 193-204.

[5] R.H. Lamprey and B.H. Barnes, Product graphs and their applications, Modelling and Simulation 5 (1974) 1119-1123.